\(\frac{A}{B}\)biết:

A=\(\frac{1}{2}+\frac{1}{3}+\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 3 2021

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)

\(2009A=\frac{2009}{2}+\frac{2009}{3}+\frac{2009}{4}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(2009A=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{1}{2008}\right)+1\)

\(2009A=2018+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}=B\)

\(\Leftrightarrow\frac{A}{B}=\frac{1}{2009}\)

12 tháng 2 2018

Ta có :

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

12 tháng 2 2018

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)

\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)

\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)

\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)

Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)

\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)

Bí òi

6 tháng 1 2017

A:B=1:2

6 tháng 1 2017

a:b=1:4

k nhé

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

4 tháng 4 2018

Ta có : 

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) ( thiếu đề nhé ) 

\(B=\left(2008-1-1-...-1\right)+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)

\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)

Vậy \(\frac{A}{B}=\frac{1}{2009}\)

Chúc bạn học tốt ~ 

31 tháng 8 2020

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...............+\frac{2}{2007}+\frac{1}{2008}\)

\(B=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+........+\left(1+\frac{1}{2008}\right)+1\)

\(B=\frac{2009}{2}+\frac{2009}{3}+..............+\frac{2009}{2008}+\frac{2009}{2009}\)

\(B=2009\left(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2009}\right)\)

Khi đó: \(\text{​​}\text{​​}\text{​​}\frac{A}{B}=\frac{1}{2009}\)

Chuc bạn học tốt!!

Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)\)

Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}}{2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}\right)}\)

hay \(\frac{A}{B}=\frac{1}{2009}\)

11 tháng 5 2016

Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!

batngo

11 tháng 5 2016

ukm máy nó bị cke mất

21 tháng 5 2018

Ta có : 

\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(\Rightarrow B=1+\left(\frac{2007}{2}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)

\(\Rightarrow B=\frac{2009}{2009}+\frac{2009}{2}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(\Rightarrow B=\frac{2009}{2}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(\Rightarrow B=2009.\left(\frac{1}{2}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow B=2009.A\)

\(\Rightarrow\frac{A}{B}=\frac{A}{2009.A}=\frac{1}{2009}\)

Chúc bạn học tốt !!! 

21 tháng 5 2018

\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=2008+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)-2007\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)\)

=> \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)