Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)
\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)
\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)
\(=\sqrt{3}-1-\sqrt{3}-1\)
\(=-2\)
B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)
\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)
\(=\sqrt{5-2\sqrt{2}-2}\)
\(=\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)
\(=\sqrt{2}-1\)
b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
a)\(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=\sqrt{\left(2\sqrt{3}\right)^2-2.4.2\sqrt{3}+4^2}=\sqrt{\left(2\sqrt{3}-4\right)^2}\)\(=\left|2\sqrt{3}-4\right|=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}=\sqrt{3^2-2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}=\sqrt{\left(3-2\sqrt{5}\right)^2}=2\sqrt{5}-3\)
c)\(\sqrt{23-\sqrt{240}}=\sqrt{23-4\sqrt{15}}=\sqrt{\left(2\sqrt{5}\right)^2-2.\sqrt{3}.2\sqrt{5}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}=2\sqrt{5}-\sqrt{3}\)
d)\(\sqrt{33-12\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.3.2\sqrt{6}+3^2}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)
Trả lời:
a)\(\sqrt{28-16\sqrt{3}}\)
\(=\sqrt{16-16\sqrt{3}+12}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{20-12\sqrt{5}+9}\)
\(=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}-3\)
c) \(\sqrt{23-\sqrt{240}}\)
\(=\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{20-4\sqrt{15}+3}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
\(=2\sqrt{5}-\sqrt{3}\)
d) \(\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{24-12\sqrt{6}+9}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3\)
\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)
\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)
\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)
\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
mk chỉ lm đk với đề như này th à
\(\sqrt{28-16\sqrt{3}}-\sqrt{28+16\sqrt{3}}\)
Đặt A = \(\sqrt{28-16\sqrt{3}}-\sqrt{28+16\sqrt{3}}\)
nhận xét : A < 0, bình phương hai vế ta được :
\(A^2=\left(\sqrt{28-16\sqrt{3}}-\sqrt{28+16\sqrt{3}}\right)^2\)
\(\Rightarrow A^2=\left(\sqrt{28-16\sqrt{3}}\right)^2+\left(\sqrt{28+16\sqrt{3}}\right)^2-2\sqrt{\left(28-16\sqrt{3}\right)\left(28+16\sqrt{3}\right)}\)
=> \(A^2=28-16\sqrt{3}+28+16\sqrt{3}-2\sqrt{28^2-\left(16\sqrt{3}\right)^2}\)
=>\(A^2=56-2\sqrt{784-768}\)
=> \(A^2=56-2\sqrt{16}=56-2.4\)
=> \(A^2=48\)
=> \(A=\pm\sqrt{48}\) mà A < 0 nên
\(A=-\sqrt{48}\)