\(3\sqrt{2}-5\sqrt{8x}+\sqrt{18x}=28\)

\(\sqrt{16x+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)

\(\Leftrightarrow\sqrt{x+1}.-13=0\)

\(\Leftrightarrow x=-1\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

20 tháng 8 2019

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

21 tháng 10 2020

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)

24 tháng 6 2019

\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)

24 tháng 6 2019

câu a chắc đề như zầy pk bạn???

\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)

\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)

b)đề như này đúng ko bạn??

\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)

câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này

Vậy pt trên vô nghiệm

2 tháng 8 2017

ai trả lời dùm em cái ak. E cảm ơn nhiềuvui

6 tháng 10 2020

a.\(\sqrt{x-2}=\sqrt{4-x}\)

đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)

pt đã cho tương đương với

\(x-2=4-x\)

\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)

b.\(\sqrt{x^2-8x+6}=x+2\)

đk: \(x+2\ge0\Rightarrow x\ge-2\)

pt đã cho tương đương với

\(x^2-8x+6=\left(x+2\right)^2\)

\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)

\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)

c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)

\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)

\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)

pt tương đương: \(2x-1=25\)

\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)

d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)

pt tương đương: \(1-2x=9.3x\)

\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)

e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)

đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)

pt đã cho tương đương với

\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

26 tháng 6 2017

a, \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) \(x\ge-1\)

\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow x+1=25\Leftrightarrow x=24\)

26 tháng 6 2017

2) "biểu thức"=\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\Leftrightarrow4\sqrt{x-5}=12\Leftrightarrow\sqrt{x-5}=3\Leftrightarrow x=14\)

Kl: x=14

3) "biểu thức"=\(4\sqrt{x-1}-3\sqrt{x-1}+\sqrt{x-1}=5\Leftrightarrow2\sqrt{x-1}=5\Leftrightarrow\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow x=\left(\dfrac{5}{2}\right)^2+1=\dfrac{29}{4}\)

Kl: x=29/4