K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

\(\Rightarrow A=\sqrt{10}\)

20 tháng 5 2017

Sorry Emma mới học lớp 5 à 

23 tháng 9 2023

\(a,\dfrac{2}{\sqrt{3}-\sqrt{5}}+\dfrac{3-2\sqrt{3}}{\sqrt{3}-2}\)

\(=\dfrac{5-3}{\sqrt{3}-\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}\)

\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\sqrt{3}\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{3}\)

\(=\sqrt{5}+2\sqrt{3}\)

\(b,\dfrac{5-\sqrt{5}}{\sqrt{5}-1}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+3}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\sqrt{5}+\dfrac{5-2\sqrt{15}+3}{5-3}\)

\(=\dfrac{2\sqrt{5}+8-2\sqrt{15}}{2}\)

\(=\dfrac{2\cdot\left(\sqrt{5}+4-\sqrt{15}\right)}{2}\)

\(=\sqrt{5}-\sqrt{15}+4\)

#\(Toru\)

26 tháng 8 2021

Bài 1: 

\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)

\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)

\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)

Bài 2: 

Ta có: G-1

\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)

\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ

hay \(G\le1\)

NV
13 tháng 8 2021

\(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

b. 

\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)

\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)

\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}=2\sqrt{10}\)

c.

\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}=\dfrac{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}{\sqrt{b}.\sqrt{b}}=\dfrac{a^2-b}{b}\)

NV
4 tháng 8 2021

\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)

\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)

\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}\)

\(=2\sqrt{10}\)

a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

\(=\sqrt{3-2}=1\)

b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{3}\)

25 tháng 6 2021

`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`

`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`

`=sqrt{3-2}=1`

`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`

`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`

`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`

`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`

`c)C=3-sqrt{3-sqrt5}`

`=3-sqrt{(6-2sqrt5)/2}`

`=3-sqrt{(sqrt5-1)^2/2}`

`=3-(sqrt5-1)/sqrt2`

`=3-(sqrt{10}-sqrt2)/2`

`=(6-sqrt{10}+sqrt2)/2`

\(Q=\dfrac{\left(3-\sqrt{5}\right)\cdot\sqrt{6+2\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)

\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

23 tháng 5 2022

giúp mình với ạ

4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)

\(=\dfrac{-\sqrt{5}}{2}\)