\(\sqrt{2}-\sqrt{3-\sqrt{5}}\) ). \(\sqrt{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

1) \(b=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right).\sqrt{2}\)

\(b=2-\sqrt{6-2\sqrt{5}}\)

\(b=2-\sqrt{5-2\sqrt{5}+1}\)

\(b=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(b=2-\sqrt{5}+1=3-\sqrt{5}\)

Bài 2:

a: \(=\sqrt{5}-2\)

b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)

c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)

d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)

e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)

\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)

f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)

\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

14 tháng 8 2018

\(A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

\(B=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\)

\(C=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\sqrt{9}\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=\sqrt{9}\left(7-5\right)=2\sqrt{9}\)

\(D=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)

\(E=\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{5^2-\sqrt{5}^2}=\dfrac{60}{20}=3\)

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)