\(\sqrt[3]{9\text{+}\sqrt{80}}\text{+}\sqrt[3]{9-\sqrt{80}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)

\(\Leftrightarrow A^3=4-3A\)

=>A=1

c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(=1+3=4\)

25 tháng 8 2017

Đặt A = \(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)=> \(A^3=18+3A\Leftrightarrow A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\Leftrightarrow A-3=0\Leftrightarrow A=3\)

\(\dfrac{\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{3}=\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3}=\dfrac{1}{3}\)

11 tháng 7 2017

Ta có \(\sqrt[3]{26+15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}\)

\(=\sqrt[3]{2^3+3.2^2\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)

\(=2+\sqrt{3}\)

Đặt \(x=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)

Ta có \(x^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)

\(=9+\sqrt{80}+9-\sqrt{80}+3.\left(\sqrt[3]{9+\sqrt{80}}\right)^2\left(\sqrt[3]{9-\sqrt{80}}\right)+3.\left(\sqrt[3]{9-\sqrt{80}}\right)^2\left(\sqrt[3]{9+\sqrt{80}}\right)\)

\(=18+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)

\(=18+3\sqrt[3]{9^2-80}.x\)

\(=18+3x\)

Vậy \(x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

Vậy x = 3

Do đó \(M=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+3=2^2-3+3=4\)

Vậy M = 4.

NV
25 tháng 9 2019

\(B=\frac{\sqrt{3-\sqrt{9-4x^2}}}{x}\) sẽ hợp lý hơn, chứ biểu thức B đúng như bạn ghi thì ko rút gọn được theo a

NV
25 tháng 9 2019

\(a^2=6+2\sqrt{9-4x^2}\Rightarrow\sqrt{9-4x^2}=\frac{a^2-6}{2}\)

\(\Rightarrow9-4x^2=\frac{\left(a^2-6\right)^2}{4}\Rightarrow x^2=\frac{36-\left(a^2-6\right)^2}{16}=\frac{a^2\left(12-a^2\right)}{16}\)

\(\Rightarrow B=\pm\sqrt{\frac{3-\sqrt{9-4x^2}}{x^2}}=\pm\sqrt{\frac{3-\frac{a^2-6}{2}}{x^2}}=\pm\sqrt{\frac{12-a^2}{2x^2}}\)

\(\Rightarrow B=\pm\sqrt{\frac{8\left(12-a^2\right)}{a^2\left(12-a\right)^2}}=\pm\sqrt{\frac{8}{a^2}}=\pm\frac{2\sqrt{2}}{a}\)

20 tháng 7 2020

a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)

c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

Rút gọn

a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)

\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)

\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)

\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)

b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)

\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)

\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)

\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)

\(=4\sqrt{a}-5\sqrt{10a}\)

c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)

\(=6+\sqrt{15}-\sqrt{60}\)

\(=6-\sqrt{15}\)