Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)
\(\Leftrightarrow A^3=4-3A\)
=>A=1
c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(=1+3=4\)
Đặt A = \(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)=> \(A^3=18+3A\Leftrightarrow A^3-3A-18=0\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\Leftrightarrow A-3=0\Leftrightarrow A=3\)
\(\dfrac{\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{3}=\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3}=\dfrac{1}{3}\)
Bài 1:
a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)
\(=5-\sqrt{3}-2+\sqrt{3}=3\)
b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)
\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)
\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)
c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)
d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
a/ \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
Mấy câu kia bấm máy tính là xong hết
B2:
a/ \(=\sqrt{-\left(x^2+5\right)}\)
Có \(x^2+5>0\forall x\Rightarrow-\left(x^2+5\right)< 0\forall x\)
Vậy biểu thức luôn ko đc xđ
b/ x-4\(\ge0\) \(\Rightarrow x\ge4\)
c/ Có -3<0
Để căn thức xđ\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
d/ Có -(x2+1)<0\(\forall\) x
Để căn thức có nghĩa \(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
Ta có \(\sqrt[3]{26+15\sqrt{3}}=\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}\)
\(=\sqrt[3]{2^3+3.2^2\sqrt{3}+3.2.\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^3}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}\)
Đặt \(x=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
Ta có \(x^3=\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)^3\)
\(=9+\sqrt{80}+9-\sqrt{80}+3.\left(\sqrt[3]{9+\sqrt{80}}\right)^2\left(\sqrt[3]{9-\sqrt{80}}\right)+3.\left(\sqrt[3]{9-\sqrt{80}}\right)^2\left(\sqrt[3]{9+\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9+\sqrt{80}}.\sqrt[3]{9-\sqrt{80}}\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)
\(=18+3\sqrt[3]{9^2-80}.x\)
\(=18+3x\)
Vậy \(x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
Vậy x = 3
Do đó \(M=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+3=2^2-3+3=4\)
Vậy M = 4.