\(\sqrt[3]{55+\sqrt{3024}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2020

Casio cho kết quả \(\frac{5+\sqrt{21}}{2}\)

Bạn tự lập phương rồi tách ngược là được

14 tháng 10 2016

\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)

\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)

Thay a vào P để tính.

23 tháng 3 2020

có ai tên cuongkim ở hoidap 247 ko

19 tháng 7 2018

Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)

\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)

\(\Leftrightarrow a^3-3a-110=0\)

\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)

\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 1:

$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$

$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$

$\Leftrightarrow a^3=110+3a$

$\Leftrightarrow a^3-3a-110=0$

$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$

$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$

$\Leftrightarrow (a-5)(a^2+5a+22)=0$

Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$

Vậy........

$a=

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 2:

Bạn xem tại đây:

Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến

Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS

6 tháng 9 2020

Không dùng máy tính thì dùng bảng :))

6 tháng 9 2020

a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\sqrt{7.55.35.11}=\sqrt{7.5.11.5.7.11}=\sqrt{\left(5.7.11\right)^2}\)

\(=5.7.11=385\)

b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{\sqrt{144}}{23}.\frac{23}{\sqrt{16}}=\frac{\sqrt{144}}{\sqrt{16}}=\sqrt{\frac{144}{16}}=\sqrt{9}=3\)

c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)

d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)

6 tháng 9 2020

a)\(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)

b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=3\)

c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)

9 tháng 9 2019

bạn nhân biểu thức trong căn với 2 thì sẽ xuất hiện hằng đẳng thức,mình làm cho bạn biểu thức số 2, các biểu thức còn lại tương tự bạn tự làm nhé

\(\sqrt{2-\sqrt{3}}=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}=\sqrt{\frac{4-2\sqrt{3}}{2}}=\sqrt{\frac{\left(\sqrt{3}\right)^2-2.1.\sqrt{3}+1}{2}}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}=\frac{\sqrt{3}-1}{\sqrt{2}} \)

9 tháng 9 2019

cảm ơn bn nha!!!