Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 ntn.
gọi số thú săn đc mỗi ng là a1, a2,..., a7
vì mỗi người ăn đc số thú khác nhau nên giả sử là a1<a2<ả3<...<a7
TH1: a5>15⇒a5+a6+a7≥16+17+18=51>50a5>15⇒a5+a6+a7≥16+17+18=51>50
TH2 : a5≤15⇒a1+a2+a3+a4≤14+13+12+11=50⇒a5≤15⇒a1+a2+a3+a4≤14+13+12+11=50⇒a5+a6+a7≥50a5+a6+a7≥50
câu 2.
Xét F(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxnF(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxn
⇒F′(x)=f(x)>0∀x∈R⇒F′(x)=f(x)>0∀x∈R
suy ra F(x) đồng biến trên R
⇒F(π)>F(0)⇔a0.π>0⇔a0>0⇒F(π)>F(0)⇔a0.π>0⇔a0>0
a)
{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)
Lấy (2) chia (1): q = 2 thế vào (1):
(1) ⇔ u1.25 = 192 ⇔ u1 = 6
Vậy u1 = 6 và q = 2
b) Ta có:
{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)
Lấy 2 chia 1: q = 2 thế vào (1)
(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12
Vậy u1 = 12 và q = 2
c) Ta có:
{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)
Lấy (2) chia (1): q = 2 thế vào (1)
(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1
Vậy u1 = 1 và q = 2
Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: u1 và d.
Ta có:
{u1+2u5=0S4=14⇔{u1+2.(u1+4d)=0[2u1+3d].42=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3.
b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\) và \(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).
Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).
a) \(\left\{{}\begin{matrix}u_5=96\\u_7=384\end{matrix}\right.\)
\(u^2_6=u_5.u_7=96.384=36864\)
\(\Leftrightarrow u_6=192\)
\(q=\dfrac{u_7}{u_6}=\dfrac{384}{192}=2\)
\(u_5=u_1.q^4\)
\(\Leftrightarrow u_1=\dfrac{u_5}{q^4}=\dfrac{96}{2^4}=6\)
b) \(\left\{{}\begin{matrix}u_4-u_2=25\\u_3-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q^3-u_1.q=25\\u_1.q^2-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q\left(q^2-1\right)=25\left(1\right)\\u_1.\left(q^2-1\right)=50\left(2\right)\end{matrix}\right.\)
\(\left(1\right):\left(2\right)\Leftrightarrow q=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow u_1=\dfrac{50}{q^2-1}=\dfrac{50}{\dfrac{1}{4}-1}=-\dfrac{200}{3}\)