Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
Vì /x/ = 1/2 suy ra x=1/2 hoặc x=-1/2.
Với x=1/2 suy ra y =2.1/4-1/2+1=1
Với x=-1/2 suy ra y = 2.1/4+1/2+1=2
b) Vì y = 2x2-x+1 = 1
suy ra 2x2-x=0
x.(2x-1)=0
suy ra x=0 và x=1/2
c) Vì A (-1;4) nên x=-1; y=4
ta có 2.(-1)2+1+1=4 = (4)
nên A(-1;4) thuộc đồ thị hàm số trên
Các điểm tiếp theo làm tương tự nhé
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow x+y+t=180^o\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{t}{4}=\frac{x+y+t}{2+3+4}=\frac{180^o}{9}=20^o\)
+) \(\frac{x}{2}=20^o\Rightarrow x=40^o\)
+) \(\frac{y}{3}=20^o\Rightarrow y=60^o\)
+) \(\frac{t}{4}=20^o\Rightarrow t=80^o\)
b) \(x+y+t=180^o\)
\(\Rightarrow4t+4t+t=180^o\)
\(\Rightarrow9t=180^o\)
\(\Rightarrow t=20^o\)
\(\Rightarrow x=y=20^o.4=80^o\)
Vậy ...
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
Lời giải:
Vì $x,y,z$ tỉ lệ nghịch với $8,9,10$ nên:
$8x=9y=10z$
$\Rightarrow \frac{8x}{360}=\frac{9y}{360}=\frac{10z}{360}$
$\Rightarrow \frac{x}{45}=\frac{y}{40}=\frac{z}{36}$
Đặt $\frac{x}{45}=\frac{y}{40}=\frac{z}{36}=k$
$\Rightarrow x=45k; y=40k; z=36k$
Khi đó:
\(P=\frac{x+4y-6z}{x+2y-3z}=\frac{45k+4.40k-6.36k}{45k+2.40k-3.36k}=\frac{-11k}{17k}=\frac{-11}{17}\)
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hình ảnh như vậy chưa đủ cơ sở làm em hi