Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
ĐKXĐ : \(x\ge4\)
\(pt\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=2\sqrt{x^2-16}+2x-12\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=x+4+2\sqrt{\left(x+4\right)\left(x-4\right)}+x-4-12\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=\left(\sqrt{x+4}+\sqrt{x-4}\right)^2-12\) \(\left(1\right)\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=y\) \(\left(y>0\right)\)
\(pt\left(1\right)\Leftrightarrow y=y^2-12\)
\(y^2-y-12=0\)
\(\Leftrightarrow y^2-4y+3y-12=0\)
\(\Leftrightarrow\left(y-4\right)\left(y+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-3\left(\text{loại}\right)\end{matrix}\right.\)
\(y=4\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}8-x\ge0\\x^2-16x=x^2-16x+64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\0x=64\left(\text{vô nghiệm}\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
1/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\Rightarrow x+\sqrt{x^2-16}=\frac{a^2}{2}\)
Phương trình trở thành:
\(a=2\left(\frac{a^2}{2}-6\right)\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=3\Rightarrow2x+2\sqrt{x^2-16}=9\)
\(\Rightarrow2\sqrt{x^2-16}=9-2x\) (\(x\le\frac{9}{2}\))
\(\Rightarrow4\left(x^2-16\right)=\left(9-2x\right)^2\)
Phương trình bậc 2 rồi đó, bạn tự giải
2/ Cho T rồi bắt làm gì bây giờ bạn ơi?
3/ Chứng minh cái gì bạn ơi?
4/ Không giải được bạn ơi, pt này chỉ giải được khi x; y là số nguyên tố, không phải số nguyên, mình gặp vài chục lần rồi nên vẫn nhớ :(
\(\sin^2x.sin^2y+sin^2x.cos^2y+cos^2x\)
\(\sin^2x.\left(\sin^2y+cos^2y\right)+cos^2x\)
=sin2x.1+cos2x
=sin2x+cos2x
=1