K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Đặt tử số là : A = 1 + 3 + 32 + ...... + 32009

=> 3A = 3 + 32 + ...... + 32010

=> 3A - A = 32010 - 1

=> 2A =  32010 - 1

=> A = \(\frac{3^{2010}-1}{2}\)

Thay cào là ra nhé bạn :D

15 tháng 4 2017

Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)

=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)

=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)

=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)

=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)

ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^

15 tháng 4 2017

dung r bn oi

con co cau p=1/2+1/3+...+1/2011+1/2012

9 tháng 1 2016

ai làm được cho 10 tick

9 tháng 1 2016

a,Ta co:\(A=\frac{2005^{2005}+1}{2005^{2006}+1}<\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005^{2005}+2005}{2005^{2006}+2005}\)

                 \(=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}\) =B                                                                                        Vay A<B    

b,lam tuong tu nhu y a

 

             

             

4 tháng 2 2019

\(S=1-3+3^2-3^3+...+3^{2008}\)

\(3S=3-3^2+3^3-3^4+...+3^{2009}\)

\(4S=3^{2009}+1\)

\(\Rightarrow4S-1-3^{2009}=3^{2009}+1-1-3^{2009}\)

\(\Rightarrow B=0\)

25 tháng 4 2017

Ta có: 1/2011.2009 = 1/2011 - 1/2009   ; 1/2009.2007 = 1/2009 - 1/2007.  làm tường tự vội số còn lại.

Ta có: 1/2011 - 1/2009 - 1/2009 - 1/2007-  .....- 1/3 - 1/1

 ( đợi tối mình post tiếp)

31 tháng 5 2017

Áp dụng công thức: 

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\) thì được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2009}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2009.2010}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2009.2010}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{1004}{1005}\)

31 tháng 5 2017

thôi, làm luôn nè

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2009}\)

\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2009\right).2009:2}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2009.2010}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+2.\left(\frac{1}{4}-\frac{1}{5}\right)+...+2.\left(\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2.\frac{502}{1005}\)

\(=\frac{1004}{1005}\)

8 tháng 5 2020

ai trả lời câu hỏi của nguyễn quỳnh trang tao cho