K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100

5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5

5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)

 5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)

 5S = 97.98.99.100.101

 S= 97.98.99.100.101/5

 S=1901009880

10 tháng 6 2016

S=1*2*3*4+2*3*4*5+....+97*98*99*100

5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5

5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)

5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100

5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)

5S=97.98.99.100.101

S=9505049400:5=1901009880.

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

9 tháng 6 2018

Ta có: \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2a+2\right)\left(a^2-2a+2\right)\) (*)

Nhân 24 vào mỗi tổng ở tử thức và mẫu thức ta có : \(S=\frac{\left(2^4+4\right)\left(6^4+4\right)...\left(38^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)...\left(40^4+4\right)}\)

Áp dụng (*) vào S ta được:

\(S=\frac{\left(2^2+2.2+2\right)\left(2^2-2.2+2\right)\left(6^2+2.6+2\right)\left(6^2-2.6+2\right)...\left(38^2+2.38+2\right)\left(38^2-2.38+2\right)}{\left(4^2+2.4+2\right)\left(4^2-2.4+2\right)\left(8^2+2.8+2\right)\left(8^2-2.8+2\right)...\left(40^2+2.40+2\right)\left(40^2-2.40+2\right)}\)

\(=\frac{2.10.26.50...1370.1522}{10.26.50.82...1522.1682}=\frac{2}{1682}=\frac{1}{841}\)

Vậy \(S=\frac{1}{841}\)

27 tháng 4 2020

bạn tham khảo : https://olm.vn/hoi-dap/detail/107489626252.html

14 tháng 3 2017

tầm như của lớp 6dungfds hơn

1 tháng 6 2018

A) A= -1^2+2^2-3^2+4^2...99^2+100^2

A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )

= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )

= 1 + 2 + 3 + 4 + ... + 99 + 100

\(\frac{100.101}{2}=5050\)