K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Bài này không khó bạn làm được, okie?

10 tháng 6 2016

S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100

5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5

5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)

 5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)

 5S = 97.98.99.100.101

 S= 97.98.99.100.101/5

 S=1901009880

10 tháng 6 2016

S=1*2*3*4+2*3*4*5+....+97*98*99*100

5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5

5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)

5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100

5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)

5S=97.98.99.100.101

S=9505049400:5=1901009880.

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)

24 tháng 6 2018

a) 2 +4+6+8+...+2018

= ( 2018+2) x 1009 : 2

= 2020 x 1009 : 2

= 1009 x (2020:2)

= 1009 x 1010

= 1 019 090

b) S = 10 + 102 + 103 + ...+ 10100

=> 10.S = 102 + 103 + 104 +...+ 10101

=> 10.S - S = 10101-10

9.S=10101- 10

\(\Rightarrow S=\frac{10^{101}-10}{9}\)

c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5S-S=1-\frac{1}{5^{100}}\)

\(4S=1-\frac{1}{5^{100}}\)

\(S=\frac{1-\frac{1}{5^{100}}}{4}\)

e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!

24 tháng 6 2018

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

\(S=\frac{1009}{2020}\)

21 tháng 6 2018

a;b;c có những câu tương tự rồi, ko giải lại nx

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

b tự làm nốt nha

AH
Akai Haruma
Giáo viên
24 tháng 11 2017

Lời giải:

Ta có:

\(A=\frac{(2^3+1)(3^3+1)(4^3+1)...(100^3+1)}{(2^3-1)(3^3-1).....(100^3-1)}\)

\(=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1).....(100+1)(100^2-100+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(100-1)(100^2+100+1)}\)

\(=\frac{3.4...101(2^2-2+1)(3^2-3+1)...(100^2-100+1)}{1.2.3..99(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

\(=\frac{100.101}{2}.\frac{(2^2-2+1)(3^2-3+1)....(100^2-100+1)}{(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

Xét: \(a^2+a+1=(a+1)^2-a=(a+1)^2-(a+1)+1\)

Do đó:

\(\left\{\begin{matrix} 2^2+2+1=3^2-3+1\\ 3^2+3+1=4^2-4+1\\ ....\\ 99^2+99+1=100^2-100+1\\ \end{matrix}\right.\)

\(\Rightarrow A=\frac{100.101}{2}.\frac{2^2-2+1}{100^2+100+1}=5050.\frac{3}{10101}\)

\(A< 5050.\frac{3}{10100}=\frac{5050}{10100}.3=\frac{3}{2}\)

Vậy \(A< \frac{3}{2}\) hay \(A< B\)

10 tháng 12 2019

Cái chỗ so sánh a với tích kia là \(\frac{3}{10101}\) chứ ko phải là\(\frac{3}{10100}\) nhé

29 tháng 8 2018

gọi biểu thức \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{100}+1\right)\) là A

Ta có:\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{100}+1\right)\)

\(\Rightarrow A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2.A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{100}}\right)\)

\(\Rightarrow2-\dfrac{1}{2^{100}}< 2^{100}\)

hay \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{100}+1\right)< 2^{100}\)

29 tháng 8 2018

bạn giải thích dòng 2 dòng 3 đi bạn mk ko hiểu

29 tháng 5 2018

\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(A=2^2-1^2+4^2-3^2+...+100^2-99^2\)

\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

\(A=1\left(1+2\right)+1\left(3+4\right)+....+1\left(99+100\right)\)

\(A=1+2+3+4+....+99+100\)

A=5050

\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(B=\left(3.7\right)^8-\left(21^8-1\right)\)

\(B=21^8-21^8+1\)

B=1

mà A=5050

⇒ A>B