Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
\(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\\ \Rightarrow A=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\\ \Rightarrow A=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{16}{2}+\dfrac{17}{2}\\ \Rightarrow A=\dfrac{1}{2}\left(2+3+4+...+17\right)=76\)
\(S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{2010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-2^{2010}+1=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A-2^{2010}+1=A\)
\(\Rightarrow A=2^{2010}-1\)
\(\Rightarrow S=2^{2010}-A=2^{2010}-\left(2^{2010}-1\right)=1\)
b/ Ta có công thức \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
Do đó:
\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+...+\dfrac{1+2+3+...+16}{16}\)
\(P=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{2.3}+\dfrac{4.5}{2.4}+...+\dfrac{16.17}{2.16}\)
\(P=1+\dfrac{1}{2}\left(3+4+5+...+17\right)\)
\(P=1+\dfrac{1}{2}.\dfrac{\left(17-3+1\right)\left(3+17\right)}{2}=76\)