K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

Ta có S=1+32+34+...+398=>32.S=32+34+36+....+3100

=(S-1)+3100

=>9S=S+3100-1=>\(S=\frac{3^{100}-1}{8}\)

Ta thấy S=1+32+34+..+398=(1+398)+(32+34)+....+(394+396)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10.

23 tháng 3 2021

Sửa lại S=1+32+34+..+398=(1+398)+(32+34)+...+(394+396)

22 tháng 2 2017

S = 1 + 32 + 34 + 36 + ... + 392 + 394 + 396 + 398

= (1 + 32) + (34 + 36) + ... + (392 + 394)+ (396 + 398)

= (1 + 32) + 34(1 + 32) + .... + 392(1 + 32) + 396(1 + 32)

= (1 + 9) + 34(1 + 9) + ..... + 392.( 1 + 9) + 396(1 + 9)

= 10 + 34.10 + ...... + 392.10 + 396.10

= 10(1 + 34 + ..... + 392 + 396) Chia hết cho 10

=> S Chia hết cho 10 (ĐPCM)

22 tháng 2 2017

S=1+3^2+,,,,,,,+3^97+3^98

S=(1+3^2)+.............+(3^97+3^98)

S=(1+3^2)+............+3^97.(1+3^2)

S=(1+9)+........+3^97.(1+9)

S=10+......+3^97.10 \(⋮\)10

Vì (1+9=10\(⋮\)10)

=>S\(⋮10\)

1 tháng 4 2016

Mk ngĩ ra rồi

S=(1+32)+(34+36)+...+(396+398)

S=10+34.(1+32)+...+396.(1+32)

S=10+34.10+...+396.10

S=10(1+34+...+396)

có thừa số 10 chia hết cho 10 nên tích chia hết cho 10

1 tháng 4 2016

k đi mình trả lời cho

28 tháng 6 2016

Ta có: \(3S=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\)

\(\Rightarrow4S=\left(1-3+3^2-3^3+3^4-...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\right)\)

\(\Rightarrow4S=1-3^{100}\)

\(\Rightarrow S=\frac{1-3^{100}}{4}\)

 

28 tháng 6 2016

 

S = 1 - 3 + 32 - 33 + 34 - .... + 398 - 399

 =1 -3.(1-3+32-33+34-...+398-399+399)

=1-3(1 - 3 + 32-33+34-...+398-399)-3.399

=1-3S-3100

=>S+3S=1-3100

=>4S=1-3100

=>S=(1-3100)/4

15 tháng 11 2016

a) Ta có: S=1+(32)1+(32)2+(32)3+....+(32)49=1+9+92+...+949

9S=9+92+93+...+950 =>9S-S=950-1 =>S=\(\frac{9^{50}-1}{8}\)

b) Ta có: S=1+9+92+...+949 . S có (49+1)=50 số hạng, nhóm 2 số hạng liên tiếp với nhau ta được:

S=(1+9)+92(1+9)+....+948(1+9)=10.(1+92+...+948)

Vậy S chia hết cho 10

Bạn tham khảo bài này nà

https://olm.vn/hoi-dap/detail/214049743330.html

vào tkhđ của t sẽ thấy or ib đưa link nhé

Học tốt

\(S=1-3-3^2+...+3^{98}-3^{99}\)

\(S=\left(1-3+3^2-3^3\right)+...+\left(3^{36}-3^{37}+3^{38}-3^{39}\right)\)

\(S=-20+...+3^{36}.\left(-20\right)\)

\(S=-20\left(1+...+3^{36}\right)⋮\left(-20\right)\)

\(\Rightarrow-20\left(1+...+3^{36}\right)\)là bội của \(\left(-20\right)\)

\(\Rightarrow S\in B\left(20\right)\)

hok tốt!!