Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\ge-1\) thì \(\left|x+1\right|=x+1\)\(\Rightarrow A=\frac{x+1+2x}{3x^2-2x+1}=\frac{3x+1}{3x^2-2x+1}\)
Thay \(x=\frac{3}{4}>-1\) vào ta được:\(A=\frac{3.\frac{3}{4}+1}{3.\left(\frac{3}{4}\right)^2-2.\frac{3}{4}+1}=\frac{52}{19}\)
Với \(x< -1\) thì \(\left|x+1\right|=-\left(x+1\right)=-x-1\)\(\Rightarrow A=\frac{-x-1+2x}{3x^2-2x+1}=\frac{x-1}{3x^2-2x+1}\)
Thay \(x=-2< -1\) vào ta được \(A=\frac{-2-1}{3.\left(-2\right)^2-2.\left(-2\right)+1}=-\frac{3}{17}\)
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
Bài 1:
a: \(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{2}=x\)
=>\(\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)
=>\(x-\dfrac{1}{2}>=0\)
=>\(x>=\dfrac{1}{2}\)
b: \(\left|1-3x\right|+1=3x\)
=>\(\left|1-3x\right|=3x-1\)
=>\(1-3x< =0\)
=>3x-1>=0
=>3x>=1
=>\(x>=\dfrac{1}{3}\)
Bài 2:
a: \(C=\left|5-x\right|+x=\left|x-5\right|+x\)
TH1: x>=5
\(C=x-5+x=2x-5\)
TH2: x<5
C=5-x+x=5
b: D=|2x-1|-x
TH1: x>=1/2
\(D=2x-1-x=x-1\)
TH2: \(x< \dfrac{1}{2}\)
D=1-2x-x=1-3x
a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)
= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]
= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2 – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}
= 7x4 + (-35). x3 + 14x2 – [ 5x4 + (-35)x3 + 15x2 ]
= 7x4 + (-35). x3 + 14x2 - 5x4 + 35x3 - 15x2
= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )
= 2x4 + 0 - x2
= 2x4 – x2
b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:
P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 – (\( - \dfrac{1}{2}\))2 \))
\(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)
\(a,-3x^2+7x-9+\left(x-1\right)\left(x+2\right)\\ =-3x^2+7x-9+x^2-x+2x-2\\ =\left(-3x^2+x^2\right)+\left(7x-x+2x\right)-\left(9+2\right)\\ =-2x^2+8x-11\\ b,x\left(x-5\right)-2x\left(x+1\right)\\ =x^2-5x-2x^2-2x\\ =\left(x^2-2x^2\right)-\left(5x+2x\right)\\ =-3x^2-7x\\ c,4x\left(x^2-x+1\right)-\left(x-1\right)\left(x^2-x\right)\\ =4x^3-4x^2+4x-x\left(x^2-x\right)+x^2-x\\ =4x^3-4x^2+4x-x^3+x^2+x^2-x\\ =\left(4x^3-x^3\right)+\left(-4x^2+x^2+x^2\right)+\left(4x-x\right)\\ =3x^3-2x^2+3x\\ =x\left(3x^2-2x+3\right)\)
\(d,-5x\left(x-5\right)+\left(x-3\right)\left(x^2-7\right)\\ =-5x^2+25x+x\left(x^2-7\right)-3\left(x^2-7\right)\\ =-5x^2+25x+x^3-7x-3x^2+21\\ =\left(-5x^2-3x^2\right)+\left(25x-7x\right)+x^3+21\\ =-8x^2+x^3+18x+21\)
A=|3x+1|-x-2 (1)
Ta có:|3x+1|=3x+1<=>3x+1 \(\ge\) 0<=>\(x\ge-\frac{1}{3}\)
|3x+1|=-(3x+1)<=>3x+1<0\(\Leftrightarrow x<-\frac{1}{3}\)
Nếu \(x\ge-\frac{1}{3}\) thì (1) trở thành : 3x+1-x-2=(3x-x)+(1-2)=2x-1
Nếu \(x<-\frac{1}{3}\) thì (1) trở thành :-(3x+1)-x-2=-3x-1-x-2=(-3x-x)+(-1-2)=-4x-3
Vậy..............
`(x+1)(x^2-x+1)-3x(x-2)`
`= x(x^2-x+1)+1(x^2-x+1) -[3x*x+3x*(-2)]`
`= x*x^2+x*(-x)+x*1+x^2-x+1-(3x^2-6x)`
`=x^3-x^2+x+x^2-x+1-3x^2+6x`
`= x^3-3x^2+6x+1`
cứu