Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
Ta có : 2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1
=> a + b + c + d / a = a + b + c + d / b = a + b + c + d / c = a + b + c + d / d
Xét 2 trường hợp :
TH1: a + b + c + d = 0
=> a + b = - ( c + d ) ; b + c = - ( a + d ) ; c + d = - ( a + b )
Khi đó M = ( -1 ) . 4 = -4
TH2 : a + b + c + d khác 0
=> a = b = c = d
Khi đó M = 1 . 4 = 4
Vậy M = 4 hoặc M = - 4
Tham khảo nhé
https://olm.vn/hoi-dap/tim-kiem?id=1164587&subject=1&q=+++++++++++2a+b+c+da+=a+2b+c+db+=a+b+2c+dc+=a+b+c+2dd+T%C3%ADnh+M=a+bc+d++b+cd+a++c+da+b++d+ab+c+++++++++++
Ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=4\)
=>2a+b+c+d=4a
=>2a=b+c+d
Tương tự ta có:2b=a+c+d 2c=a+b+d 2d=a+b+c
=>2a+2b=b+c+d+a+c+d
=>a+b+2c+2d
=>a+b=2c+2d
\(\Rightarrow\frac{a+b}{c+d}=2\)
Tương tự ta có:\(b+\frac{c}{d}+a=2\)
\(c+\frac{d}{a}+b=2\)
\(d+\frac{a}{b}+c=2\)
=>M=2+2+2+2=8
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath
\(A=\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Với a + b + c + d = 0 => a + b = - ( c + d )
=> \(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Với \(a+b+c+d\ne0\) => a = b = c = d
=> \(A=1+1+1+1=4\)
Ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)(1)
TH1: a + b + c + d =0
=> a + b = -c - d
b + c = - a - d
a + c = -b - d
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+a}{b+d}\)
\(=\frac{-c-d}{c+d}+\frac{-a-d}{a+d}+\frac{-b-d}{b+d}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(b+d\right)}{b+d}\)
\(=-1+\left(-1\right)+\left(-1\right)=-3\)
TH2: \(a+b+c+d\ne0\)
Từ (1) => a = b = c =d
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+a}{b+d}\)
\(=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}\)
\(=1+1+1=3\)