\(\frac{a+2b}{3a}\) + \(\frac{b+2a}{3b}\) khi a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

\(a^2-3ab+2b^2=0\)

\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)

\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=b\end{matrix}\right.\)

+) TH1: \(a=2b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)

\(P=\frac{4b}{6b}+\frac{5b}{3b}\)

\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)

+) TH2: \(a=b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)

Vậy....

26 tháng 9 2019

\(a^2-3ab+2b^2=0\)

\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)

\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)

+ ) TH1 :  

\(a=2b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)

\(P=\frac{4b}{6b}+\frac{5b}{3b}\)

\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)

+ ) TH 2  \(a=b\)

\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)

\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)

Chúc bạn học tốt !!!

26 tháng 11 2019

Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\)  lien tiep la duoc 

Chuc bn thanh cong

27 tháng 11 2019

svác-xơ ngược dấu.

\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)

Tương tự 

\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)

\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Cộng lại ta được:

\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)

10 tháng 2 2019

\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)

\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)

\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)

24 tháng 7 2016

a) Xét : \(P^2=\frac{3\left(a-b\right)^2}{3\left(a+b\right)^2}=\frac{3\left(a^2+b^2\right)-6ab}{3\left(a^2+b^2\right)+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\)

Vì a > b > 0 nên P > 0 . Vậy \(P=\frac{1}{2}\)

b) Tương tự.

24 tháng 7 2016

a/ \(3a^2+3b^2=10ab\Leftrightarrow3\left(a^2+b^2\right)=10ab\Leftrightarrow a^2+b^2=\frac{10ab}{3}\)

\(\Leftrightarrow a^2+b^2-2ab=\frac{10ab}{3}-2ab\Leftrightarrow\left(a-b\right)^2=\frac{4ab}{3}\)

tương tự: \(a^2+b^2=\frac{10ab}{3}\Leftrightarrow a^2+b^2+2ab=\frac{10ab}{3}+2ab\Leftrightarrow\left(a+b\right)^2=\frac{16ab}{3}\)

\(\Rightarrow P^2=\left(\frac{a-b}{a+b}\right)^2=\frac{\frac{4ab}{3}}{\frac{16ab}{3}}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)

bố 32 tuổi

con 6 tuổi

ủng hộ nha

24 tháng 7 2016

Câu b). Theo đầu bài ta có:
\(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=ab+4ab\)
\(\Rightarrow2a^2+2b^2-4ab=ab\)
\(\Rightarrow2\left(a^2+b^2-2ab\right)=ab\)
\(\Rightarrow\left(a-b\right)^2=\frac{ab}{2}\)
\(\Rightarrow a-b=\sqrt{\frac{ab}{2}}\)
Mà \(2a^2+2b^2=5ab\)
\(\Rightarrow2a^2+2b^2=9ab-4ab\)
\(\Rightarrow2a^2+2b^2+4ab=9ab\)
\(\Rightarrow2\left(a^2+b^2+2ab\right)=9ab\)
\(\Rightarrow\left(a+b\right)^2=\frac{9ab}{2}\)
\(\Rightarrow a+b=\sqrt{\frac{9ab}{2}}\)
Từ trên suy ra:
\(Q=\frac{a+b}{a-b}=\left(a+b\right):\left(a-b\right)\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}}:\sqrt{\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9ab}{2}:\frac{ab}{2}}\)
\(\Leftrightarrow Q=\sqrt{\frac{9\cdot ab\cdot2}{ab\cdot2}}\)
\(\Leftrightarrow Q=\sqrt{9}=3\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!