Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{6}\)
\(=\frac{3+6-2}{12}=\frac{7}{12}\)
\(\frac{1}{2}\)* \(\frac{1}{2}\)+ \(\frac{1}{2}\)*\(\frac{1}{3}\)+ \(\frac{1}{3}\)* \(\frac{1}{4}\)+ \(\frac{1}{4}\)* \(\frac{1}{5}\)+ \(\frac{1}{5}\)* \(\frac{1}{6}\)
=\(\frac{1}{2}\)* \(\frac{1}{6}\)= \(\frac{1}{12}\)
( Những phân số khác nhau bạn loại đi nhé tại mình ko làm được bước đó trên này bạn thông cảm nhé ! )
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
a.5/6 - 26/5 X 1/13 = 13/30
b.( 19/23 - 22/46 ) X 23/46 = 3/23
c.25/8 x 14/30 = 35/24
d.( 3/4 x 5/7 ) x ( 20/9 x 14/15 ) = 10/9
e.4/35 x 25/32 x 38/24 = 95/672
g. 1/2 x 3/4 x 2/3 x 4/5 = 1/5
h.5/6 x 11/4 - 5/4 x 23/6 = -5/2
i.9/16 x 13/4 - 9/4 x 5/16 + 9/16 x 17/4 = 225/64
k.( 7 x 1/3 ) x ( 1/7 x 6 ) = 2
m.2/3 x ( 3/5 + 3/7 ) = 34/35
n.4/5 x ( 5/8 + 7/4 ) = 19/10
p.( 1/33 + 31/333 - 341/3333 ) x ( 1/2 - 1/3 - 1/6 ) = 0
mih giành cả nửa tiếng để giải đó , k nha
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
a, \(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}=\frac{1\cdot2\cdot3\cdot4\cdot5}{2\cdot3\cdot4\cdot5\cdot6}=\frac{1}{6}\)
b, 10,3 x 37,5 - 37,5 x 10,2
= 37,5 x ( 10,3 - 10,2 )
= 37,5 x 0,1
= 3,75
a) \(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\)
\(=\frac{1\times2\times3\times4\times5}{2\times3\times4\times5\times6}\)
\(=\frac{1}{6}\)
b) 10,3 x 37,5 - 37,5 x 10,2
= 37,5 x ( 10,3 - 10,2 )
= 37,5 x 0,1
= 3,75
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
\(=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{30}{60}+\frac{10}{60}+\frac{5}{60}+\frac{3}{60}+\frac{2}{60}=\frac{50}{60}=\frac{5}{6}\)
=\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+\(\frac{1}{30}\)=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)
=1-\(\frac{1}{6}\)
=\(\frac{5}{6}\)
\(\frac{1}{5}\cdot\frac{1}{7}+\frac{4}{5}+\frac{1}{5}\cdot\frac{12}{7}-1-\frac{1}{5}\cdot\frac{6}{7}\)
\(=\frac{1}{5}\cdot\left(\frac{1}{7}+\frac{12}{7}-\frac{6}{7}\right)-\left(1-\frac{4}{5}\right)\)
\(=\frac{1}{5}.1-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}=0\)
=3×4×5×...1964 phần 2×3×4×...×1963
=1964/2=982