Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(101^2=\left(100+1\right)^2=10000+200+1=10201\\ 9999^2=\left(10000-1\right)^2=100000000-20000+1=99980001\\ 47\cdot53=\left(50-3\right)\left(50+3\right)=2500-9=2491\\ 991\cdot1009=\left(1000-9\right)\left(1000+9\right)=1000000-81=999919\)
a: \(101^2=10201\)
b: \(9999^2=99980001\)
c: \(47\cdot53=2491\)
d: \(991\cdot1009=999919\)
Câu 3:
a: \(49^2=2401\)
b: \(51^2=2601\)
c: \(99\cdot100=9900\)
`a)1001^2`
`=(1000+1)^2=1000000+2000+1`
`=1002001`
`b)29,9.30,1`
`=(30-0,1)(30+0,1)`
`=30^2-0,1^2`
`=900-0,01=899,99`
`c)199^2=(200-1)^2`
`=40000-400+1`
`=39601`
`d)84^2-16^2`
`=(84-16)(84+16)`
`=100.68`
`=6800`
`e)313^2-312^2`
`=(313-312)(313+312)`
`=625`
`f)47.53`
`=(50-3)(50+3)`
`=2500-9=2491`
Từ \(a^2-2b+1=0;b^2-2c+1=0;c^2-2a+1=0\)
\(\Rightarrow\left(a^2-2b+1\right)+\left(b^2-2c+1\right)+\left(c^2-2a+1\right)=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Rightarrow a=b=c=1}\)
\(\Rightarrow P=\left(1-2\right)^{201}+\left(1-2\right)^{202}+\left(1-2\right)^{203}=-1+1-1=-1\)
a,=(2a + b - 3c).(2a + b - 3c)
=4a\(^2\)+2ab-6ac+2ab+b\(^2\)-3bc-6ac-3cb+9c\(^2\)
=4a\(^2\)+b\(^2\)+9c\(^2\)+4ab
=2\(^2\).a\(^2\)+4ab+b\(^2\)+9c\(^2\)
=(2a+b)\(^2\)+9c\(^2\)( đáng lẽ chỗ này nó phải là -9c\(^2\) nhưng t ko ra đc )
b,=(a + 2b + 3c - 4d)(a + 2b + 3c - 4d)
=a\(^2\)+2ab+3ac-4ad+2ab+4b\(^2\)+6bc-8bd+3ac+6bc+9c\(^2\)-12cd-4ad-8bd-12cd+16d\(^2\)
=a\(^2\)+4b\(^2\)+9c\(^2\)+16d\(^2\)+4ab+6ac-8ad+12bc-16bd-24cd
=(a\(^2\)+4ab+4b\(^2\))+(9c\(^2\)-24cd+16d\(^2\))+6ac-8ad+12bc-16bd
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(3ac-4ad+6bc-8bd)
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2[a(3c-4d)+2b(3c-4d)]
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(a+2b)(3c-4d)
khiếp bài dài nghoằng ra ý :(
a: \(\left(2a+b-3c\right)^2\)
\(=4a^2+b^2+9c^2+4ab-12ac-6bc\)
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
Lời giải:
Đặt $2^{50}=a$. Bài toán trở thành: CMR: $4a^4+1\vdots 2a^2+2a+1$
Thật vậy:
$4a^4+1=(2a^2)^2+1+2.2a^2-4a^2$
$=(2a^2+1)^2-(2a)^2=(2a^2+1-2a)(2a^2+1+2a)\vdots 2a^2+2a+1$
Ta có đpcm.
a) \(99^2=\left(100-1\right)^2=100^2-2.100+1=9801\)
b) \(2001.1999=\left(2000+1\right)\left(2000-1\right)=2000^2-1^2=3999999\)
c) \(48^2+4.48+4=\left(48+2\right)^2=50^2=2500\)
d) \(101^2-202+1=101^2-2.101+1=\left(101-1\right)^2=100^2=10000\)