K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)

\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)

\(=37^2-2\cdot37\cdot12+12^2\)

\(=\left(37-12\right)^2\)

\(=25^2=625\)

12 tháng 8 2019

A=625

B=10000

26 tháng 12 2021

\(a,892^2+216.892+108^2=892^2+2.108.892+108^2=\left(892+108\right)^2=1000^2=1000000\)

b, \(9x^2+42x+49=9.1^2+42.1+49=9+42+49=100\)

c,\(\left(x^2-3x\right)+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)=\left(6+1\right)\left(6-3\right)=7. 3=21\)

a: \(A=\dfrac{\left(37+12\right)\left(37^2+12^2-37\cdot12\right)}{49-37\cdot12}\)

\(=\dfrac{49\cdot1069}{49-37\cdot12}\simeq-132.61\)

b: \(=\dfrac{\left(52-48\right)\left(52^2+48^2+52\cdot48\right)}{4+52\cdot48}\)

\(=\dfrac{4\cdot7504}{4+52\cdot48}=\dfrac{7504}{625}\)

18 tháng 5 2022

\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)

\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)

\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)

\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)

3 tháng 7 2021

a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)

b)

\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)

 

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Lời giải:

a. $153^2-53^2=(153-53)(153+53)=100.206=20600$

b. 

$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$

$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$

$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$

$=2020+2019+2018+2017+...+2+1$

$=\frac{2020.2021}{2}=2041210$

13 tháng 8 2021

a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68

= 2,83.(5,86-4,86)+1,17.(5,86-4,86)=2,83.1+1,17.1=4

b) 1112-1372-482+96.137

= 1112-(1372-2.48.137+482)=1112-(137-48)2=1112-892=(111-89)(111+89)=22.200=4400

13 tháng 8 2021

a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68

= (2,83.5,68-2,83.4,68)+(1,17.5,68-1,17.4,68)

=2,83.(5,68-4,68)+1,17(5,68-4,68)=2,83+1,17=4

 

19 tháng 1 2022

a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)

=x2-2x+1-8x+4x2-6+3x=5x2-7x-6

b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y

c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4