Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(103^2=\left(100+3\right)^2=10000+600+9=10609\)
b) \(52\cdot48=\left(50-2\right)\left(50+2\right)=2500-4=2496\)
c) \(75^2-50\cdot75+25^2=\left(75-25\right)^2=50^2=2500\)
\(103^2=\left(100+3\right)^2=100^2+2.3.100+3^2=10000+600+9=10609\)
\(52.48=\left(50+2\right)\left(50-2\right)=50^2-2^2=2500-4=2496\)
\(75^2-50.75+25^2=75^2-25.75-25.75+25^2=75\left(75-25\right)-25\left(75-25\right)=\left(75-25\right)=50^2=2500\)
a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)
b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)
a) \(52^2\)
\(=\left(50+2\right)^2\)
\(=50^2+2\cdot2\cdot50+2^2\)
\(=2500+200+4\)
\(=2704\)
b) \(98^2\)
\(=\left(100-2\right)^2\)
\(=100^2-2\cdot100\cdot2+2^2\)
\(=10000-400+4\)
\(=9604\)
`a, 52^2 = (50+2)^2 = 2500 + 200 + 4 = 2704`
`b, 98^2 = (100-2)^2 = 100^2 - 2 . 100 . 2 + 4 = 10000 - 400 + 4`
`= 9604`
\(101^2=\left(100+1\right)^2=10000+200+1=10201\\ 9999^2=\left(10000-1\right)^2=100000000-20000+1=99980001\\ 47\cdot53=\left(50-3\right)\left(50+3\right)=2500-9=2491\\ 991\cdot1009=\left(1000-9\right)\left(1000+9\right)=1000000-81=999919\)
a: \(101^2=10201\)
b: \(9999^2=99980001\)
c: \(47\cdot53=2491\)
d: \(991\cdot1009=999919\)
a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)
b)
\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)
Lời giải:
a. $153^2-53^2=(153-53)(153+53)=100.206=20600$
b.
$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$
$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$
$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$
$=2020+2019+2018+2017+...+2+1$
$=\frac{2020.2021}{2}=2041210$
a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)
\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)
\(=37^2-2\cdot37\cdot12+12^2\)
\(=\left(37-12\right)^2\)
\(=25^2=625\)
a) \(41\cdot24-41\cdot14+59\cdot24-59\cdot14\)
\(=41\cdot10+59\cdot10\)
\(=1000\)
a) \(82\cdot78\)
\(=\left(80+2\right)\cdot\left(80-2\right)\)
\(=80^2-2^2\)
\(=6400-4\)
\(=6396\)
b) \(87\cdot93\)
\(=\left(90-3\right)\left(90+3\right)\)
\(=90^2-3^2\)
\(=8100-9\)
\(=8091\)
c) \(125^2-25^2\)
\(=\left(125-25\right)\left(125+25\right)\)
\(=100\cdot150\)
\(=15000\)
\(a.75^2-50.75+25^2\\ =75^2-2.25.75+25^2\\ =\left(75-25\right)^2=50^2=2500\)
\(b.103.97\\ =\left(100+3\right)\left(100-3\right)\\ =100^2-3^2\\ =9991\)
\(a,75^2-50.75+25^2\\ =75^2-2.75.25+25^2\\ =\left(75+25\right)^2=100^2=10000\\ b,103.97\\ =\left(100+3\right).\left(100-3\right)\\ =100^2-3^2=10000-9=9991\)