Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(53.\left(-15\right)+\left(-15\right).47=\left(-15\right).\left(53+47\right)=\left(-15\right).100=-1500\)
b) \(\left(-43\right).92-46.27+46.41=\left(-86\right).46-46.27+46.41\)
\(=46\left[\left(-86\right)-27+41\right]=46.\left(-72\right)=-3312\)
c) \(\left(-72\right)\left(15-49\right)+15\left(-56+72\right)=\left(-72\right).15-72.49+15.\left(-56\right)+15.72\)
\(=\left[\left(-72\right).15+15.72\right]-72.49-15.56=0-3528-840=4368\)
d) \(\left(-2^4\right).17.\left(-3\right)^0.\left(-5\right)^6\left(-1^{2n}\right)=16.17.1.12625.\left(-1^{2n}\right)\)
a,\(53.\left(-15\right)+\left(-15\right).47\)
\(=-15.\left(53+47\right)=-15.100=-1500\)
\(b,-43.92-46.27+46.41\)
\(=-43.92-\left[46.\left(27-41\right)\right]=-43.92-\left[46.\left(-14\right)\right]\)
\(=-3956+644=-3312\)
\(c,-72\left(15-49\right)+15\left(-56+72\right)\)
\(=-15.72+49.72+15.\left(-56\right)+15.72\)
\(=72.\left(-15+49+15\right)-15.56=3528-840=2688\)
a) 53.(-15)+(-15).47
=53.[(-15)+(-15)].47
=53.(-30).47
=-1590.47
=-74730
a) (-25) . 21. (-2)2. (-|-3|) . (-1)2n+1 (n thuộc N*)
=(-25).21.4.(-3).(-1)
=4.(-25).63
=63.(-100)=-6300
b, (-5)3 . 67. (-|-23|) . (-1)2n (n thuộc N*)
=(-5)3 . 67. (-23) . 1
=(5.2)3.67
=1000.67=67000
a) 2x = 64
=> 2x = 26
=> x = 6
b) 5x = 7x
=> 7x - 5x = 0
=> 5x(2x - 1) = 0
=> \(\orbr{\begin{cases}5^x=0\\2^x-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\in\varnothing\\2^x=1\end{cases}}\)\(\Rightarrow2^x=2^0\Rightarrow x=0\)
c) 5x . 53 = 125
=> 5x + 3 = 53
=> x + 3 = 3
=> x = 0
d) 3x - 17 = 64
=> 3x = 64 + 17
=> 3x = 81
=> 3x = 34
=> x = 4
e) (3x - 5)3 = 52 . 24 + 600
=> (3x - 5)3 = 25.16 + 600
=> (3x - 5)3 = 400+ 600
=> (3x - 5)3 = 1000
=> (3x - 5)3 = 103
=> 3x - 5 = 10
=> 3x = 15
=> x = 15 : 3
=> x = 5
g) (5x - 15)3 = (5x - 15)7
=> (5x - 15)7 - (5x - 15)3 = 0
=> (5x - 15)3. [(5x - 15)4 - 1] = 0
=> \(\orbr{\begin{cases}\left(5x-15\right)^3=0\\\left(5x-15\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(5x-15\right)=0\\\left(5x-15\right)^4=1\end{cases}\Rightarrow}\orbr{\begin{cases}5x-15=0\\5x-15=\pm1\end{cases}}}\)
Nếu 5x - 15 =0
=> 5x = 15
=> x = 3
Nếu 5x - 15 = 1
=> 5x = 16
=> x = 16 : 5
=> x = 16/5
Nếu 5x - 16 = -1
=> 5x = 14
=> x = 14 : 5
=> x = 14/5
Vậy \(x\in\left\{3;\frac{16}{5};\frac{14}{5}\right\}\)
a) 2x = 64
Vì 26 = 64 nên x = 6
Vậy x = 6
b) 5x = 7x
Vì 50 = 1 và 70 = 1
=> x = 0
Vậy, x = 0
c) 5x . 53 = 625
Ta có 625 = 54
nên 5x . 53 = 54
5x+3 = 54
=> x = 1
Vậy x = 1
d) 3x - 17 = 64
3x = 64 + 17 = 81 = 34
=> x = 4
Vậy x = 4
e) ( 3x - 5 ) 3 = 52 . 24 + 600
( 3x - 5 ) 3 = 25 . 16 + 600 = 1000 = 103
=> 3x - 5 = 10
3x = 10 + 5 = 15
x = 15 : 3 = 5
Vậy x = 5
g) ( 5x - 15 ) 3 = ( 5x - 15 ) 7
=> (5x - 15 ) 3 : ( 5x - 15 ) 7 = 1
( 5x - 15 ) 3 - 7 = 1
( 5x - 15 ) -4 = 1 = 1-4 = -1-4
=> 5x - 15 = 1 hoặc 5x - 15 = -1
5x = 1 + 15 hoặc 5x = -1 + 15
5x = 16 hoặc 5x = 14
\(x=\frac{16}{5}\) hoặc \(x=\frac{14}{5}\)
Vậy, \(x\in\left\{\frac{16}{5};\frac{14}{5}\right\}\)
Cbht
\(a)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Leftrightarrow x\left(x^{14}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy....
\(b)2^x-15=17\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy...
\(c)\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Leftrightarrow2x=4\Rightarrow x=2\)
Vậy...
_Y nguyệt_
\(a)x^{15}=x\)
\(\Rightarrow x=1\)
\(b)2^x-15=17\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\Rightarrow x=5\)
\(c)\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow x=2\)
A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
Đặt ak = k.(k+1).(k+2)
4a1 = 1.2.3.3-0.1.2.3
4a2 = 2.3.4.3-1.2.3.3
………….
4an-1 = (n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)
4an = n.(n+1).(n+2).(n+3)-(n-1).n.(n+1).(n+2)
Cộng từng vế n, ta được:
4(a1+a2+a3+………….+an) = n.(n+1).(n+2).(n+3)
4[1.2.3+2.3.4+3.4.5+………………..+n.(n+1).(n+2)] = n.(n+1).(n+2).(n+3)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)