Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(A=1-\frac{1}{64}\)
\(A=\frac{63}{64}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(3B-B=1-\frac{1}{243}\)
\(2B=\frac{242}{243}\)
\(B=\frac{242}{243}\div2\)
\(B=\frac{121}{243}\)
a.A=1/2+1/4+1/8+1/16+1/32+1/64
A= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot4}+\frac{1}{4\cdot4}+\frac{1}{4\cdot8}+\frac{1}{8\cdot8}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{8}\)
= 1 - 1/8 = 7/8
b.B=1/3+1/9+1/27+1/81+1/243
B= \(\frac{1}{1\cdot3}+\frac{1}{3\cdot3}+\frac{1}{3\cdot9}+\frac{1}{9\cdot9}+\frac{1}{9\cdot27}\)
= 1 - 1/27 = 26/27
b) 78.31 + 78.24 + 78.17 + 72. 22
= 78. ( 31 + 24 + 17 ) + 72 . 22
= 78 . 72 + 72 . 22
= 72 (78+22)
= 72 . 100 = 7200
b) 78 x 31 + 78 x 24 + 78 x 17 + 72 x 22
= 78 x ( 31 + 24 + 17 ) + 72 x 22
= 78 x 72 + 72 x 22
= 72 x ( 78 + 22 )
= 72 x 100
= 7200
(\(\dfrac{2}{3}\) + \(\dfrac{8}{9}\) + \(\dfrac{26}{27}\) + \(\dfrac{80}{81}\) + \(\dfrac{242}{243}\)) : y = 5
Đăt A = \(\dfrac{2}{3}\) + \(\dfrac{8}{9}\) + \(\dfrac{26}{27}\) + \(\dfrac{80}{81}\) + \(\dfrac{242}{243}\)
3A = 2 + \(\dfrac{8}{3}\) + \(\dfrac{26}{9}\) + \(\dfrac{80}{27}\) + \(\dfrac{242}{81}\)
3A - A = 2 + \(\dfrac{8}{3}\) + \(\dfrac{26}{9}\) + \(\dfrac{80}{27}\) + \(\dfrac{242}{81}\) - \(\dfrac{2}{3}\)-\(\dfrac{8}{9}\)-\(\dfrac{26}{27}\)-\(\dfrac{80}{81}\)-\(\dfrac{242}{243}\)
A x (3 - 1) = 2 - \(\dfrac{242}{243}\)+ (\(\dfrac{8}{3}\) - \(\dfrac{2}{3}\))+(\(\dfrac{26}{9}\) - \(\dfrac{8}{9}\))+(\(\dfrac{80}{27}\)-\(\dfrac{26}{27}\))+(\(\dfrac{242}{81}\)-\(\dfrac{80}{81}\))-\(\dfrac{242}{243}\)
A x 2 = 2 - \(\dfrac{242}{243}\) + 2 + 2 + 2 + 2
A x 2 = (2 + 2 + 2 +2 + 2) - \(\dfrac{242}{243}\)
A x 2 = 2x5 - \(\dfrac{242}{243}\)
A x 2 = 10 - \(\dfrac{242}{243}\)
A x 2 = \(\dfrac{2188}{243}\)
A = \(\dfrac{2188}{243}\) : 2
A = \(\dfrac{1094}{243}\)
\(\dfrac{1094}{243}\) : y = 5
y = \(\dfrac{1094}{243}\) : 5
y = \(\dfrac{1094}{1215}\)
\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{3}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{7}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{15}{16}+\dfrac{1}{32}\right)\)
\(=1-\dfrac{31}{32}=\dfrac{1}{32}\)
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
Quý thành chung một mẩu số rồi tính là xong.Ta lấy mẫu số chung là 243