Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{101.103}\)
\(=\frac{2}{5}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5,7}+...+\frac{2}{101.103}\right)\)
\(=\frac{2}{5}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{2}{5}\left(1-\frac{1}{103}\right)\)
\(=\frac{2}{5}.\left(\frac{102}{103}\right)=\frac{204}{515}\)
Nhớ kiểm tra lại cho kl nhé
917749738461936926399639748776398646491639394748947630373937366
sửa đề nhé:
\(\frac{5}{1\times3}+\frac{5}{3\times5}+...+\frac{5}{99\times101}\)
\(5\times\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{99\times101}\right)\)
\(=\frac{5}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\left(1-\frac{1}{101}\right)\)
\(=\frac{5}{2}\times\frac{100}{101}\)
\(=\frac{250}{101}\)
b ) Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{101.103}\)
\(\Rightarrow A=\frac{5}{2}\left(\frac{5}{1}-\frac{5}{3}+\frac{5}{3}-\frac{5}{5}+....+\frac{5}{101}-\frac{5}{103}\right)\)
\(\Rightarrow A=\frac{5}{2}\left(5-\frac{5}{103}\right)\)
2) \(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{99\times101}+\frac{3}{101\times103}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{101\times103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\frac{101}{103}\)
\(=\frac{303}{206}\)
Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Đặt : \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(A-\frac{2}{1\cdot3}=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(2A-\frac{2}{1\cdot3}=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-...+\frac{2}{99}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{2}{3}-\frac{2}{101}\)
\(2A-\frac{2}{3}=\frac{196}{303}\)
\(A-\frac{2}{3}=\frac{98}{303}\)
\(A=\frac{98}{303}+\frac{2}{3}=\frac{100}{101}\)