Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\)
\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(\Rightarrow S=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+....+\frac{1}{195}\)
\(=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{13x15}\)
\(=\frac{1}{2}x\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{13x15}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{15}\right)=\frac{1}{2}x\frac{14}{15}=\frac{7}{15}\)
Giải:
Đặt A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195
2A= 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9)+2/(9.11) + 2/(11.13)+2/(13.15)
2A=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9...
2A=1/1-1/15=14/15
Vậy A=14/15 : 2 = 7/15
Nhấn đúng mk nha Tran Dan
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+..+\frac{1}{143}+\frac{1}{195}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{13.15}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{13}-\frac{1}{15}\)
= \(1-\frac{1}{15}=\frac{14}{15}\)
tick đúng nha
Đặt A = 1 / 3 + 1 / 15 + 1 / 35 + 1 / 63 + 1 / 99 + 1 / 143 + 1 / 195
A = 1 / 1 x 3 + 1 / 3 x 5 + 1 / 5 x 7 +1 / 7 x 9 + 1 / 9 x 11 + 1 / 11 x 13 + 1 / 13 x 15
A x 2 = 2 / 1 x 3 + 2 / 3 x 5 +2/ 5 x 7 + 2/ 7 x 9 + 2 / 9 x 11 + 2/ 11 x 13 +2 / 13 x 15
A x 2 = 1 / 1 - 1 / 3 + 1 / 3 - 1 /5 + 1 / 5 - 1 / 7 + 1 / 7 - 1 / 9 + 1 / 9 - 1 / 11 + 1 / 11 - 1 / 13 + 1 / 13 - 1 / 15
A x 2 = 1 / 1 - 1 / 15
A x 2 = 14 / 15
A = 7 / 15
=1/3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1-1/15
=14/15
vậy đáp số là 14/15
Dấu \(.\)là dấu nhân
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{2}.\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{7}{15}\)
~ Ủng hộ nhé
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
Suy ra ; \(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}=\frac{14}{15}\)
=> A = \(\frac{14}{15}:2=\frac{14}{15}.\frac{1}{2}=\frac{7}{15}\)
Tổng các số đó là:
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{399}\)
\(=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+...+\dfrac{1}{19\times21}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{19\times21}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{2}\times\dfrac{20}{21}\)
\(=\dfrac{10}{21}\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) +...+
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\)+ \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\)+...+
Xét dãy số 1; 3; 5; 7;...; Đây là dãy số cách đều với khoảng cách là
3 - 1 = 2
Số thứ 10 của dãy số trên là 2 x (10 - 1) + 1 = 19
Vậy tổng của mười phân số đầu tiên của tổng A là:
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +....+ \(\dfrac{1}{19.21}\)
A = \(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +...+ \(\dfrac{1}{19.21}\)
A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\)+...+ \(\dfrac{2}{19.21}\))
A = \(\dfrac{1}{2}\). (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ...+ \(\dfrac{1}{19}\) - \(\dfrac{1}{21}\)
A = \(\dfrac{1}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{21}\))
A = \(\dfrac{1}{2}\). \(\dfrac{20}{21}\)
A = \(\dfrac{10}{21}\)
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{1}{3}+\dfrac{1}{25}\)
\(=\dfrac{28}{75}\)
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{399}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{7}{21}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{6}{21}\)
\(=\frac{1}{7}\)
Chúc bạn học tốt !!!
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{399}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
\(A=\frac{2}{7}:2=\frac{2}{7}.\frac{1}{2}=\frac{2}{14}=\frac{1}{7}\)
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(\Rightarrow\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}.\frac{98}{303}\)
\(\Rightarrow\frac{49}{303}\)