Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)
Đặt \(x=t-\frac{1}{3}\)
\(\Rightarrow t=x+\frac{1}{3}=\sqrt[3]{\frac{23+\sqrt{513}}{108}}+\sqrt[3]{\frac{23-\sqrt{513}}{0108}}\)
\(\Leftrightarrow t^3=\frac{23+\sqrt{513}}{108}+\frac{23-\sqrt{513}}{108}+3.\sqrt[3]{\frac{23^2-513}{108^2}}.t\)
\(\Leftrightarrow t^3=\frac{23}{54}+\frac{t}{3}\)
\(\Leftrightarrow t^3-\frac{t}{3}+\frac{31}{54}=1\)
Ta lại có
\(A=2x^3+2x^2+1\)
\(\Leftrightarrow\frac{A}{2}=x^3+x^2+\frac{1}{2}\)
\(=\left(t-\frac{1}{3}\right)^3+\left(t-\frac{1}{3}\right)^2+\frac{1}{2}\)
\(=t^3-\frac{t}{3}+\frac{31}{54}=1\)
\(\Rightarrow A=2\)
PS. Bài này nha. Bài kia viết mờ mắt luôn nên ghi nhầm vài chỗ (giải bằng điện thoại chán quá)
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}+\sqrt[3]{\frac{23-\sqrt{513}}{4}-1}}\right)\)
\(x=\frac{1}{3}\left(6,3733+6,3733-1\right)\)
\(x=\frac{1}{3}\left(12,7466-1\right)\)
\(x=\frac{1}{3}11,7466\)
\(x=\frac{1}{3}x11,7466\)
\(x=\frac{11,7466}{3}\)
\(x=3,9155\)
Số khá xấu. Bạn coi lại đề xem có viết nhầm biểu thức không?