Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Đặt\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}...+\frac{1}{110}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{10.11}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
\(S=1-\frac{1}{11}\)
\(S=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{5}{2}+\frac{5}{6}+\frac{5}{12}+...+\frac{5}{110}=5\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=5\left(1-\frac{1}{11}\right)=5.\frac{10}{11}=\frac{50}{11}\)
A=1/15+1/21+1/28+....+1/190
1/2A=1/30+1/42+1/56+.....+1/380
1/2A=1/5.6+1/6.7+1/7.8+....+1/19.20
1/2A=1/5-1/6+1/6-1/7+1/7-1/8+......+1/19-1/20
1/2A=1/5-1/20
1/2A=3/20
A=3/20:1/2
A=3/10
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}\)+\(\frac{2}{96}\)
=\(2\)x (\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}\)\(+\frac{1}{96}\))
=\(2\)x (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...\)\(+\frac{1}{48}-\frac{1}{96}\))
=\(2\)x (\(1-\frac{1}{96}\))
=\(2\)x \(\frac{95}{96}\)
=\(\frac{190}{96}=\frac{95}{48}\)
a, 3/2 + 3/6 + 3/12 + . . . + 3/90
= 3/1*2 + 3/2*3 + 3/3*4 + . . . + 3/9*10
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + . . . + 1/9 - 1/10
= 1/1 - 1/10 = 9/10
Vậy a = 9/10
ko chắc chắn lắm
a) Ta có\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{11}\right)=1-\frac{2}{11}=\frac{9}{11}\)
b) Ta có \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2048}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)(1)
Đặt S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
Lấy 2S trừ S ta có :
2S - S \(=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\right)\)
\(S=1-\frac{1}{2048}\)
Khi đó (1) <=> \(1-\left(1-\frac{1}{2048}\right)=1-1+\frac{1}{2048}=\frac{1}{2048}\)
\(a,\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+....+\frac{2}{90}+\frac{2}{110}\)
\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.....+\frac{1}{90}+\frac{1}{110}\right)\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}+\frac{1}{10.11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=1-\frac{2}{11}\)
\(=\frac{9}{11}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=\left(1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9+\left(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+...+\frac{1}{9\cdot10}\right)\)
\(A=9+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9+\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=8\frac{1}{10}\)