
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/3+1/6+1/10+1/15+......+1/4950
=2x(1/6+1/12+1/20+1/30+……+1/9900)
=2x(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+……+1/99-1/100)
=2x(1/2-1/100)
=1-1/50
=49/50
**** nhé

\(\frac{1\cdot3\cdot9+2\cdot6\cdot18+3\cdot9\cdot27}{1\cdot5\cdot18+2\cdot10\cdot36+3\cdot15\cdot54}\)
\(=\frac{1\cdot3\cdot9+2\left(1\cdot3\cdot9\right)+3\left(1\cdot3\cdot9\right)}{1\cdot5\cdot18+2\left(1\cdot5\cdot18\right)+3\left(1\cdot5\cdot18\right)}\)
\(=\frac{\left(1\cdot3\cdot9\right)\left(1+2+3\right)}{\left(1\cdot5\cdot18\right)\left(1+2+3\right)}\)
\(=\frac{3}{10}\)

A , 34 - \(\dfrac{x}{30}\) = \(\dfrac{5}{6}\)
\(\dfrac{x}{30}\) = 34 - \(\dfrac{5}{6}\)
\(\dfrac{x}{30}=\) \(\dfrac{199}{6}\)
\(\dfrac{x}{30}=\) \(\dfrac{995}{30}\)
x = 995
B x +\(\dfrac{13}{34}\) = \(\dfrac{12}{17}\)
x = \(\dfrac{12}{17}-\dfrac{13}{34}\)
x = \(\dfrac{11}{34}\)
\(\dfrac{7}{9}=\dfrac{21}{27};\dfrac{7}{10}=\dfrac{21}{30}\)
hai số nằm giữa \(\dfrac{7}{9}\) và \(\dfrac{7}{10}\)
\(\dfrac{21}{27}>\dfrac{21}{28}>\dfrac{21}{29}>\dfrac{21}{30}\)

Bài 1:
a) [ (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) phần 1/2 - 1/3 + 1/4 - 1/5 ] : (1/4 - 1/6)
= [ (1/6 : 1/6) + (1/10 : 1/10) - (1/15 : 1/15) phần 30/60 - 20/60 + 15/60 - 12/60 ] : (3/12 - 2/12)
= [ 1 + 1 - 1 phần 13/60 ] : 1/12
= [ 1 : 13/60 ] x 12
= 60/13 x 12
=720/ 13
b) (3/20 + 1/2 - 1/15) x 12/49 phần 3 và 1/3 + 2/9
= (9/60 + 30/60 - 4/60) x 12/49 phần 10/3 + 2/9
= 7/12 x 12/49 phần 30/9 + 2/9
= 1/7 : 32/9
= 1/7 x 9/32
= 9/224
Đặt \(A=\dfrac{2}{3}+\dfrac{2}{6}+...+\dfrac{2}{4950}\)
\(\dfrac{1}{2}\times A=\dfrac{2}{2\times3}+\dfrac{2}{2\times6}+...+\dfrac{2}{2\times4950}\)
\(\dfrac{1}{2}\times A=\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+...+\dfrac{2}{99\times100}\)
\(\dfrac{1}{2}\times A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{99\times100}\right)\)
\(\dfrac{1}{2}\times A=2\times\left(\dfrac{3-2}{2\times3}+\dfrac{4-3}{3\times4}+...+\dfrac{100-99}{99\times100}\right)\)
\(\dfrac{1}{4}\times A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{4}\times A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(\dfrac{1}{4}\times A=\dfrac{49}{100}\)
\(A=\dfrac{49}{100}:\dfrac{1}{4}=\dfrac{49}{25}\)