Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(a,A=y^2-\dfrac{1}{2}y+\dfrac{1}{16}\)
\(=y^2-2.y.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\)
\(=\left(y-\dfrac{1}{4}\right)^2\)
Với \(y=100,25\), ta được:
\(A=\left(100,25-\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{401}{4}-\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{400}{4}\right)^2=100^2=10000\)
\(------\)
\(b,B=4x^2-9y^2-6y-1\)
\(=\left(2x\right)^2-\left[\left(3y\right)^2+2.3y.1+1\right]\)
\(=\left(2x\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
Với \(x=23;y=1\), ta được:
\(B=\left(2.23-3.1-1\right)\left(2.23+3.1+1\right)\)
\(=\left(46-4\right)\left(46+4\right)\)
\(=42.50=2100\)
a: \(x^2+x-2x-2\)
\(=x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(x-2\right)=\left(-1+1\right)\left(-1-2\right)=0\)
b: \(3x^2-2x+9x-6\)
\(=x\left(3x-2\right)+3\left(3x-2\right)\)
\(=\left(3x-2\right)\left(x+3\right)=\left(3\cdot7-2\right)\left(7+3\right)\)
\(=19\cdot10=190\)
c: \(2x^2-3xy-xy^2\)
\(=x\left(2x-3y-y^2\right)\)
\(=2\left(2\cdot2-3\cdot3-9\right)\)
\(=2\cdot\left(4-18\right)=-28\)
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(Q=x^2-y^2-2y-1\)
\(\Rightarrow Q=x^2-\left(y^2+2y+1\right)\)
\(\Rightarrow Q=x^2-\left(y+1\right)^2\)
\(\Rightarrow Q=\left(x-y-1\right)\left(x+y+1\right)\)
Thay \(x=93;y=6\)vào \(Q\)ta được :
\(Q=\left(93-6-1\right)\left(93+6+1\right)\)
\(\Rightarrow Q=86.100\)
\(\Rightarrow Q=8600\)
Vậy \(Q=8600\)
`a, A= 4xy -xy-2xy`
`= (4-1-2)xy`
`= xy`
Thay `x=2;y=3`
Ta có : `xy=2*3=6`
`b, B= x^2 y -7x^2y-4x^2y`
`=(1-7-4)x^2y`
`= -10x^2y`
Thay `x=2;y=3`
Ta có : `-10x^2y=-10*2^2 *3= -10*4*3=-40*3=-120`
`c, C=10x^2y -x^2y-7x^2y`
`=(10-1-7)x^2y`
`= 2x^2y`
Thay `x=2;y=3`
Ta có : `2x^2y=2*2^2 *3= 2*4*3=8*3=24`
`d,D=5x^2y^2-12x^2y^2+8x^2y^2`
`= (5-12+8)x^2y^2`
`=x^2y^2`
Thay `x=2;y=3`
ta có : `x^2y^2=2^2 *3^2= 4* 9=36`
có chỗ nào bn đọc ko rõ thì ns mik nha, để mik gõ ra cho bn rõ hơn
a) C = 900. b) D = 1600.