Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
Ta có: \(a-b=3\)
\(\Leftrightarrow a^2-2ab+b^2=9\)
\(\Leftrightarrow a^2+b^2-6=9\)
\(\Leftrightarrow a^2+b^2=15\)
\(M=a^4-a^3b-ab^3+b^4\)
\(=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)\)
\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
\(=3^2\left(15+3\right)=162\)
a) M = a3 + b3 + 12ab
.........= (a + b)(a2 - ab + b2) + 12ab
.........= 4a2 - 4ab + 4b2 + 12ab
.........= 4a2 + 8ab + 4b2
.........= a2 + 2ab + b2 = (a + b)2 = 42 = 16
a) N = x3 - y3 - 9xy
........= (x - y)(x2 + xy + y2) - 9xy
........= 3x2 + 3xy + 3y2 - 9xy
........= 3x2 - 6xy + 3y2
........= x2 - 2xy + y2 = (x - y)2 = 32 = 9
a)
\(A=a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
\(=a^2+b^2-ab+3ab=\left(a+b\right)^2=1\)
b)
\(B=4\left(x^3+y^3\right)-6\left(x^2+y^2\right)\)
\(=4\left(x+y\right)\left(x^2-xy+y^2\right)-6\left(x^2+y^2\right)\)
\(=4x^2+4y^2+4xy-6x^2-6y^2=-2\left(x-y\right)^2\)
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)
\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)
\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)
\(a^3+b^3=\left(a+b\right)\cdot\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(=5.\left[5^2-3.4\right]=5.13=115\)
ta có a+b=5 => a=5-a ; b=5-a
a+b=5 =>(a+b)3=125
(a+b)3=a3+b3+3a2b+3ab2 => a3+b3=(a+b)3-(3a2b+3ab2)
=> Q= a3+b3 =(a+b)3-(3a2b+3ab2)= 125-3ab(a+b) =125-60=65
nhó bn