K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

B = (154 - 1)(154 + 1) - 38 . 58 

   = 158 - 1 - (3.5)8

   = 158 - 1 - 158 = -1

6 tháng 12 2017

B=158-(3.5)8

B=158-158=0

B=(154 -1).(154+1)-38.5 =158-1-(3.5)8=158-1-158 =-1

7 tháng 1 2018

\(\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)

\(15^8-1-3^8.5^8\)

\(\left(3.5\right)^8-1-3^8.5^8\)

=\(3^8.5^8-1-3^8.5^8\)

=\(-1\)

18 tháng 6 2017

\(3^4\cdot5^4-\left(15^2+1\right)\left(15^2-1\right)\)

\(\left(3\cdot5\right)^4-\left[\left(15^2\right)^2-1\right]\)

\(15^4-15^4+1\)

= 1

Nhớ nếu đúng nhé

6 tháng 10 2015

a/ 34.54-(152+1)(152-1)

 =154-(154-152+152-1)

 =154-154+1=1

b/ x4-12x3+12x2-12x+111

 =x4-x3-11x3+11x2+x2-x-11x+11+100

=x3(x-1)-11x2(x-1)+x(x-1)-11(x-1)+100

=(x3-11x2+x-11)(x-11)+100

Thay x=11 vào ta được:

=(113-11.112+11-11)(11-11)+100

=0.10+100=100

29 tháng 10 2017

Bài 1 :

a ) Ta có :

\(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)

\(=15^4-\left(15^4-1\right)\)

\(=15^4-15^4+1\)

\(=1\)

b ) Ta có :

\(x=11\Rightarrow x+1=12\)

Thay \(x+1=12\) vào biểu thức ta được :

\(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111\)

\(=x^4-x^4-x^3+x^3-x^2+x^2-x+111\)

\(=111-x\)

Thay \(x=11\) vào biểu thức vừa rút gọn ta được :

\(111-11=100\)

29 tháng 10 2017

\(a,3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)

\(=\left(3.5\right)^4-\left(15^4-1\right)\)

\(=15^4-15^4+1\)

\(=1\)

Bài 2:

\(a,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)

\(=\left(6x+1\right)^2-2.\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)

\(=\left(6x+1-6x+1\right)^2\)

\(=2^2=4\)

\(b,3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

20 tháng 7 2016

a) \(A=1+8+8^2+8^3+....+8^7\)

\(\Rightarrow8A=8+8^2+8^3+8^4+....+8^8\)

\(\Rightarrow8A-A=8^8-1\)

\(\Rightarrow A=\frac{8^8-1}{7}\)

Các bạn có thể tính cụ thể ra vì đây là số nhỏ nhưng đối vs những bài số to thì các bạn chỉ cần làm đến đây thôi

Vậy............

b) \(B=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(=\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)

\(\Rightarrow\left(3^2-1\right)B=\left(3^2-1\right)\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)

\(\Rightarrow8B=\left(9^2-1\right)\left(9^2+1\right)\left(81^2+1\right)\)

\(\Rightarrow8B=\left(81^2-1\right)\left(81^2+1\right)\)

\(\Rightarrow8B=\left(81^4-1\right)\)

\(\Rightarrow B=\frac{81^4-1}{8}\)

Vậy...........

26 tháng 10 2016

\(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)=15^4-\left(15^4-1\right)=15^4-15^4+1=1\)

31 tháng 10 2016

thanks bn

17 tháng 12 2017

Bài 1:

1. \(-10x^3y\left(\dfrac{2}{5}x^2y+\dfrac{3}{10}xy^2\right)+3x^4y^3=-4x^5y^2-3x^4y^3+3x^4y^3=-4x^5y^2\)

2.

a. \(A=85^2+170\cdot15+225=85^2+2\cdot85\cdot15+15^2=\left(85+15\right)^2=100^2=10000\)

Vậy A = 10000

b. \(B=20^2-19^2+18^2-17^2+...+2^2-1^2=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(2^2-1^2\right)=\left(20-19\right)\left(20+19\right)+...+\left(2-1\right)\left(2+1\right)=39+35+31+27+23+19+15+11+7+3=\left(39+31+19+11\right)+\left(35+15+23+27\right)+\left(7+3\right)=100+100+10=210\)

Vậy B = 210

c. \(\left(15^4-1\right)\left(15^4+1\right)-3^8\cdot5^8=15^8-1-15^8=-1\)

Vậy C = -1

Bài 2:

Ta có: \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

\(\Rightarrow\left(x^2-2x-y^2+1\right):\left(x-y-1\right)=[\left(x-y-1\right)\left(x+y-1\right)]:\left(x-y-1\right)=x+y-1\)

Vậy \(\left(x^2-2x-y^2+1\right):\left(x-y-1\right)=x+y-1\)