Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU1
a)
a= a^3+2a^2-1/a^3+2a^2+2a+1
a=(a+1)(a^2+a-1)/(a+1)(a^2+a+1)
a=a^2+a-1/a^2+a+1
b)
Gọi d là ước chung lớn nhất của a^2+a-1 và a^2+a+1
Vì a^2 + a -1=a(a=1)-1 là số lẻ nên d là số lẻ
Mặt khác, 2= [a^2+a+1-(a^2+a-1)] chia hết cho d
Nên d=1 tức là a^2+a+1 và a^2+a-1 là nguyên tố cùng nhau
Vậy biểu thức a là phân số tối giản
CÂU 6
Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường thẳng => có:(2005x2006):2 =1003x 2005 = 2011015 ( giao điểm)
\(0,2.37,1.5+0,1.2530+33,1.10=\left(0,2.5\right).37,1+253+331\)
\(=37,1+253+331=621,1\)
a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9
Ta có: 2 = 1 . 2
2^2 = 2 . 2
2^3 = 2^2 . 2
.....
=> 1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)
=> 1 + 2 + 2^2 + ... + (2^8 . 3)
=> 1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)
=> 1 + 2 + 2^2 + ... + (2^7 . 7)
=> .....
=> 1 + 2 . 311
-(-54) (-29 + 72) + (-73) .(20 + 34)
= 54 . 43 - 73 . 54
= -54.( 73 - 43)
= -54 . 30
= -1620