Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2003x1999-2003x999}{2004x999x1994}=\frac{2003x\left(1999-999\right)}{2004x999x1994}\)
\(=\frac{2003x1000}{2004x999x1994}=\frac{1}{1994x}\)
\(\left(\frac{20052005}{20062006}-\frac{20042004}{20052005}\right)x2005x2006\)
\(=\left(\frac{2005x10001}{2006x1001}-\frac{2004x10001}{2005x10001}\right)x2005x2006\)
\(=\left(\frac{2005}{2006}-\frac{2004}{2005}\right)x2005x2006\)
\(=\frac{2005x2005x2006}{2006}-\frac{2004x2005x2006}{2005}\)
\(=2005x2005-2004x2006\)
\(=2005x2005-\left(2005-1\right)x2006\)
\(=2005x2005-2005x2006+2006\)
\(=1\)
cảm ơn bạn tíntiếnngân nha nhưng hình nhữ cách làm của bạn bị sai rồi nha
(x + 20) : 99 = (1004 + 1) x 2/99
=> 99x + 1980 = 1005 x 2/99
=> 99x = 99495/2 - 1980
=> 99x = 95535/2
=> x = 965/2
b. \(\frac{x+140}{x}\) + 260 = 21 + 65 x 4
=> \(\frac{x+140}{x}\)= 21 + 260 - 260
=> \(\frac{x+140}{x}\)= 21
=> 21x = x + 140
=> 20x = 140
=> x = 7
a) \(\left(\frac{4}{3}-\frac{4}{6}\right)+\left(\frac{4}{6}-\frac{4}{9}\right)+\left(\frac{4}{9}-\frac{4}{10}\right)+\left(\frac{4}{12}-\frac{4}{15}\right)\)
\(=\frac{4}{15}-\frac{4}{3}=\frac{-16}{15}\)
C) bạn chỉ ần bỏ các số giống nhau thôi nhé
= 1
b)
Đặt biểu thức trên là A ta có:
A = \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{96}\)
A x 3 = \(1\)+ \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{8}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)
A x 3 = \(1\)+ \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{8}\)+ \(\frac{1}{8}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{32}\)
A x 3 = 2 - \(\frac{1}{32}\)= \(\frac{63}{32}\)
A = \(\frac{63}{32}\): 3 = \(\frac{63}{96}\)
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+....+\frac{2019}{2018.2019}\)
\(=\frac{2019}{1}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\frac{2018}{2019}\)
\(=2018\)
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+\frac{2019}{20}+\frac{2019}{30}+\frac{2019}{2018.2019}\)
\(A=\frac{2019}{1.2}+\frac{2019}{2.3}+\frac{2019}{3.4}+\frac{2019}{4.5}+\frac{2019}{5.6}+...+\frac{2019}{2018.2019}\)
\(A=2019.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(A=2019.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=2019.\left(1-\frac{1}{2019}\right)\)\(=2019.\frac{2018}{2019}=2018\)
Vậy A = 2018
-Dấu " . " là dấu nhân.
\(\frac{2003\cdot1999-2003\cdot999}{2004\cdot999+1004}\)
\(=\frac{2003\cdot\left(1999-999\right)}{2004\cdot\left(999+1\right)}\)
\(=\frac{2003\cdot1000}{2004\cdot1000}\)
\(=\frac{2003}{2004}\)