Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2019}{2020}+\frac{2020}{2019}=1-\frac{1}{2020}+1+\frac{1}{2019}\)
\(=2+\frac{1}{2019}-\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow2+\frac{1}{2019}-\frac{1}{2020}>2\)
\(\frac{444443}{222222}=\frac{444444}{222222}-\frac{1}{222222}=2-\frac{1}{222222}< 2\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2019}>\frac{444443}{222222}\)
A=1-1/2019+1-1/2020+1+2/2018
=>A=(1+1+1)+(1/2018-1/2009)+(1/2018-1/2020)
Vì 1/2018>1/2019 và 1/2028>1/2020
=>A>3
Vậy a >A
study well
k nha ủng hộ mk nhé
Mình cũng làm giống thế . nhưng con bạn mình làm a < 3 nên mình không chắc chắn
Ta có : \(\frac{1}{n}+\frac{2020}{2019}=\frac{2019}{2018}+\frac{1}{n+1}\)
=> \(\frac{1}{n}-\frac{1}{n+1}=\frac{2019}{2018}-\frac{2020}{2019}\)
=> \(\frac{n+1}{n\left(n+1\right)}-\frac{n}{\left(n+1\right)n}=\frac{1}{4074342}\)
=> \(\frac{1}{n\left(n+1\right)}=\frac{1}{2018.2019}\)
=> n(n + 1) = 2018.2019
=> n(n + 1) = 2018.(2018 + 1)
=> n = 2018
Bài làm
c ) Ta có :
\(\frac{2017}{2018}< 1\)
\(\frac{12}{11}>1\)
\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)
trả lời
a, quy đồng rồi so sánh
b,quy đồng rồi so sánh
c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn
d,quy đồng rồi so sánh
chắc vậy chúc bn học tốt
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+....+\frac{2019}{2018.2019}\)
\(=\frac{2019}{1}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\frac{2018}{2019}\)
\(=2018\)
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+\frac{2019}{20}+\frac{2019}{30}+\frac{2019}{2018.2019}\)
\(A=\frac{2019}{1.2}+\frac{2019}{2.3}+\frac{2019}{3.4}+\frac{2019}{4.5}+\frac{2019}{5.6}+...+\frac{2019}{2018.2019}\)
\(A=2019.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(A=2019.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=2019.\left(1-\frac{1}{2019}\right)\)\(=2019.\frac{2018}{2019}=2018\)
Vậy A = 2018
-Dấu " . " là dấu nhân.