K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

= 2018 phải không ạ?

4 tháng 1 2019

Ta có : \(\frac{1}{n}+\frac{2020}{2019}=\frac{2019}{2018}+\frac{1}{n+1}\)

=> \(\frac{1}{n}-\frac{1}{n+1}=\frac{2019}{2018}-\frac{2020}{2019}\)

=> \(\frac{n+1}{n\left(n+1\right)}-\frac{n}{\left(n+1\right)n}=\frac{1}{4074342}\)

=> \(\frac{1}{n\left(n+1\right)}=\frac{1}{2018.2019}\)

=> n(n + 1) = 2018.2019

=> n(n + 1) = 2018.(2018 + 1)

=> n = 2018

12 tháng 8 2019

\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)

\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)

\(=\frac{0}{2019\times2018}\)

\(=0\)

Vậy A = 0 

12 tháng 8 2019

ta có

A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019

=>A*(2018*2019)=2020*2018-2019*2019+1

=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1

=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1

=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1

=>A*(2018*2019)=2018-2019+1

=>A*(2018*2019)=2018+1-2019

=>A*(2018*2019)=0

=>A=0/(2018*2019)

=>A=0

DD
24 tháng 2 2021

\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)

\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)

\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)

\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)

\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow n=2021\).

Giải \(\left(2\right)\)

- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm. 

- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định. 

- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm. 

18 tháng 7 2019

https://olm.vn/hoi-dap/detail/224964577156.html

THAM-KHẢO-NHÉ

THANKS

Ta có:                                                                                                                                                                                                                               \(\frac{2018}{2019}\)\(\frac{2019}{2020}\)+\(\frac{2020}{2018}\)= (1-\(\frac{1}{2019}\)) + ( 1 -\(\frac{1}{2020}\)) + ( 1 - \(\frac{1}{2018}\))                                                                                                                                           = ( 1+1+1) - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                            = 3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                                   \(\Leftrightarrow\)3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\)) <3                                                                                    Vậy \(\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2018}\)<    3

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

12 tháng 8 2019

Trả lời

So sánh cái nào vs cái nào ạ

sao chỉ thấy có 1 vế ạ !

12 tháng 8 2019

vi 2018/2019<1

   2019/2020<1

   2020/2021<1

nen 2018/2019 + 2019/2020 + 2020/2021<1+1+1=3

13 tháng 8 2019

A=1-1/2019+1-1/2020+1+2/2018

=>A=(1+1+1)+(1/2018-1/2009)+(1/2018-1/2020)

                    Vì 1/2018>1/2019 và 1/2028>1/2020

=>A>3

 Vậy a >A

 study well

 k nha ủng hộ mk nhé

13 tháng 8 2019

Mình cũng làm giống thế . nhưng con bạn mình làm a < 3 nên mình không chắc chắn

25 tháng 8 2019

ko ghi lại đề 

ta thấy : 2019 - 1 = 2018 

2020 - 2 = 2018 

2021 - 3 = 2018 

2022 - 4 = 2018 

=> x = 2018

thử lại :

2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022

= 1 + 1 = 1 + 1

2 = 2

22 tháng 2 2020

2020 - 2 = 2018 
2021 - 3 = 2018 
2022 - 4 = 2018 
=> x = 2018

thây zô mà thử lại

24 tháng 8 2019

Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)

\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)

\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)

\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))

\(\Leftrightarrow x=1\)

Vạy x=1