Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=1-\frac{1}{7}\)
\(B=\frac{6}{7}\)
_Học tốt nha_
1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)
2) \(5^x+5^{x+1}=150\)
=> 5x(1 + 5) = 150
=> 5x.6 = 150
=> 5x = 25
=> \(x=\pm2\)
3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
\(A=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{56.61}\right)\))
\(A=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(A=5.\frac{50}{671}\)
\(A=\frac{250}{671}\)
Chúc em học tốt^^
Bài 2:
a) \(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
b) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(=1-\frac{1}{2007}\)
\(=\frac{2006}{2007}\)
Bài 2:
a) \(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\) + ... + \(\frac{5}{61.66}\)
= \(\frac{1}{11}\) - \(\frac{1}{16}\) + \(\frac{1}{16}\) - \(\frac{1}{21}\) + \(\frac{1}{21}\) - \(\frac{1}{26}\) + ... + \(\frac{1}{61}\) - \(\frac{1}{66}\)
= \(\frac{1}{11}\) - \(\frac{1}{66}\)
= \(\frac{5}{66}\)
b) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}\)
= \(\frac{6}{7}\)
c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}+...+\frac{1}{2006.2007}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}+...+\frac{1}{2006}-\frac{1}{2007}\)
= \(1-\frac{1}{2007}\)
= \(\frac{2006}{2007}\)
Chúc bạn học tốt!
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
Vậy \(A=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=5.\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)
\(=5.\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{24}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\frac{5}{66}\)
\(=\frac{25}{264}\)
a, 1+6+11+16+...+46+51
Số số hạng là : (51-1):5+1 = 11 ( số )
Tổng là : (51+1).11:2=286
b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)
\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)
\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=\dfrac{30}{31}\)
\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)
Vậy..
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
=\(\frac{1}{5}.\frac{5}{11.16}+\frac{1}{5}.\frac{5}{16.21}+\frac{1}{5}.\frac{5}{21.26}+...+\frac{1}{5}.\frac{5}{61.66}\)
=\(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{6}{66}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)
Đặt A = \(\frac{1}{11.16}+...+\frac{1}{61.66}\)
5A = \(\frac{5}{11.16}+..+\frac{5}{61.66}\)
5a = \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
5a = \(\frac{1}{11}-\frac{1}{61}\)
5a = 50/671
a = \(\frac{50}{671}:5=\frac{10}{671}\)