Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=1-\frac{1}{7}\)
\(B=\frac{6}{7}\)
_Học tốt nha_
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{72}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{9}{18}-\frac{2}{18}=\frac{7}{18}\)
dễ mà phân tích các mẫu ra là các tích của 2 số gần liên tiếp rồi áp dụng phân số ai cập thui
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=\left(1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9+\left(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+...+\frac{1}{9\cdot10}\right)\)
\(A=9+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9+\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=8\frac{1}{10}\)
\(S1=2+4+6+...+150=\frac{2+150}{2}\cdot\left(\frac{150-2}{2}+1\right)\)
\(S1=\frac{152}{2}\cdot\left(\frac{148}{2}+1\right)=76\cdot\frac{150}{2}=76\cdot75=5700\)
- S3 và S5 tương tự nha bạn :vv
\(S2=5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow5S2=5^3+5^4+5^5+...+5^{100}+5^{101}\)
\(S2=5^2+5^3+5^4+5^5+...+5^{100}\)
\(\Rightarrow5S2-S2=4S2=5^{101}-5^2\Rightarrow S2=\frac{5^{101}-5^2}{4}\)
\(S4=\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+...+\frac{5}{61\cdot66}\)
\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}=\frac{16}{176}-\frac{11}{176}=\frac{5}{176}\)
\(A=10.\left(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+....+\frac{71}{72}+\frac{89}{90}\right)\)
Đặt \(B=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{71}{72}+\frac{89}{90}\)
\(B=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)
\(B=1+1+1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{72}+\frac{1}{90}\right)\)
\(B=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(B=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=9-\left(\frac{1}{1}-\frac{1}{10}\right)=9-\frac{9}{10}=\frac{81}{10}=8,1\)
Ta có \(A=10.B=10.B=10.8,1=81\)
Vậy \(A=81\)
Ta có: B = \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}\)
=> B = \(\frac{6}{3.5}\)+ \(\frac{6}{5.7}\)+ \(\frac{6}{7.9}\)+ \(\frac{6}{9.11}\)
=>B =\(3.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
=> B = \(3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
=> B = \(3.\left(\frac{1}{3}-\frac{1}{11}\right)\)
=> B = \(3.\frac{8}{33}\)
=> B = \(\frac{8}{11}\)
Vậy: B = \(\frac{8}{11}\)
a/ \(A=\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{4}\)
b/ \(B=\frac{5}{11.16}+\frac{5}{16.21}+........+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+........+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a) \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
b) \(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(B=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)