\(\dfrac{5^2}{1.6}\)+ \(\dfrac{5^2}{6.11}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)

\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

Tớ không biết

2 tháng 4 2017

\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\ S=\dfrac{25}{1.6}+\dfrac{25}{6.11}+\dfrac{25}{11.16}+...+\dfrac{25}{96.101}\\ S=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right)\\ S=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ S=5.\left(1-\dfrac{1}{101}\right)\\ S=5.\dfrac{100}{101}\\ S=\dfrac{500}{101}\)

1 tháng 6 2017

S=500/101

Huỳnh Huyền Linh làm đúng rùi!

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

18 tháng 7 2017

a, \(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)

\(A=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)

\(A=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)

(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(A=5.\left(1-\dfrac{1}{31}\right)=5.\dfrac{30}{31}=\dfrac{150}{31}\)

b, \(B=\dfrac{6}{15.18}+\dfrac{6}{18.21}+...+\dfrac{6}{87.90}\)

\(B=2\left(\dfrac{3}{15.18}+\dfrac{3}{18.21}+...+\dfrac{13}{87.90}\right)\)

\(B=2\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)

(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(B=2\left(\dfrac{1}{15}-\dfrac{1}{90}\right)=2.\dfrac{1}{18}=\dfrac{1}{9}\)

c, \(C=\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+...+\dfrac{3^2}{197.200}\)

\(C=3\left(\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{197.200}\right)\)

\(C=3\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)

(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(C=3\left(\dfrac{1}{8}-\dfrac{1}{200}\right)=3.\dfrac{3}{35}=\dfrac{9}{35}\)

Chúc bạn học tốt!!!

18 tháng 7 2017

Cảm ơn Đoàn Đức Hiếu nhiều!

11 tháng 5 2019

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{6}{31}\)

11 tháng 5 2019

\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)

14 tháng 4 2018

Ta có : 

\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)

\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(A=5\left(1-\frac{1}{31}\right)\)

\(A=5.\frac{30}{31}\)

\(A=\frac{150}{31}>1\)

\(\Rightarrow\)\(A>1\)

Vậy \(A>1\)

Chúc bạn học tốt ~ 

30 tháng 4 2018

Ko cần dài dòng vậy đâu,A=\(\frac{5^2}{1.6}+\left(\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\right)\)

Ta thấy \(\frac{5^2}{1.6}>1\)và tổng trong ngoặc >0  nên =>A>1

Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)

Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)

Q=5(1/1-1/31)

Q=5x30/31

Q=150/31

\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)

\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)

\(Q=5\left(1-\frac{1}{31}\right)\)

CÒN ĐÔU PN TỰ LÀM NHA

15 tháng 4 2017

A=1/15-1/16+1/16-1/17+...+1/2016-1/2017

A=1/15-1/2017

A=2002/30255

15 tháng 4 2017

C=1/3[3/5.8+3/8.11+...+3/101.104]

C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]

C=1/3[1/5-1/104]

C=1/3.99/520

C=33/520

28 tháng 4 2017

Bài 1:

a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)

\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{1}{2}\)

\(=\dfrac{1}{4}+\dfrac{2}{4}\)

\(=\dfrac{3}{4}\)

b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)

\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)

\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)

\(=\dfrac{1}{2}+\dfrac{4}{5}\)

\(=\dfrac{5}{10}+\dfrac{8}{10}\)

\(=\dfrac{9}{5}\)

c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)

\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)

\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)

\(=\dfrac{7}{3}+\dfrac{28}{3}\)

\(=\dfrac{35}{3}\)

d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)

\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)

\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)

\(=\dfrac{1}{6}-\dfrac{7}{2}\)

\(=\dfrac{1}{6}-\dfrac{21}{6}\)

\(=\dfrac{-10}{3}\)

e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)

\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)

\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)

\(=\dfrac{2}{3}\)

f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)

\(=\dfrac{5}{2}-\dfrac{3}{2}\)

\(=\dfrac{2}{2}=1\)

g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)

\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)

\(=\dfrac{1}{2}-\dfrac{3}{4}\)

\(=\dfrac{2}{4}-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)

\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)

\(=\dfrac{7}{5}-\dfrac{9}{28}\)

\(=\dfrac{196}{140}-\dfrac{45}{140}\)

\(=\dfrac{151}{140}\)

i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)

\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)

\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)

\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)

k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)

\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)

\(=-\dfrac{2}{3}\)

29 tháng 4 2017

\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)

\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)

\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)

\(A=\dfrac{1}{8}.1.20\)

\(A=\dfrac{20}{8}=\dfrac{5}{2}\)

\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)

\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)

\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)

\(B=\left(16+1\right)+4,03\)

\(B=17+4,03\)

\(B=21,03\)

\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)

\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)

\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)

\(C=390.\dfrac{15}{78}\)

\(C=75\)

22 tháng 7 2019

#)Giải :

Ta có :

\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)=5\left(1-\frac{1}{31}\right)=5\times\frac{30}{31}=\frac{150}{31}>1\)

\(\Rightarrow A>1\)

21 tháng 4 2021

b)

\(5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(5\left(1-\frac{1}{6}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(5\left(1-\frac{1}{31}\right)\)

\(=\frac{150}{31}\)

21 tháng 4 2021

a)

\(\frac{7}{10}-\frac{7}{11}+...+\frac{7}{69}-\frac{7}{70}\)

\(=\frac{7}{10}-\frac{7}{70}\)

\(=\frac{3}{5}\)