Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có người đã làm rùi mà bạn, vô phần câu hỏi tương tự sẽ có bạn nhé!
Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)
=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99
=3+97.99.101
\(\frac{1+97.33.101}{1}=161651\)
Ta có :
B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99
6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6
6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )
6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6.B = 97.99.101 - ( -1 ) .3.5
6.B = 97.99.101 + 1.3.5
6.B = 969918
=> B = 161653.
=3.(3/1.3+3/3.5+3/5.7+...+3/95.97+3/97.99)
=3(1-1/3+1/3-1/5+1/5-1/7+...+1/95-1/97+1/97-1/99)
=3[(1-1/99)+(1/5-1/5)+(1/7-1/7)+...+(1/97-1/97)]
=3(1-1/99)=3(99/99-1/99)=3.98/99=1.98/33=98/33
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\frac{98}{99}\)
\(=\frac{98}{297}\)
Chuc bn học tốt
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
A = 1.3 + 3.5 |+ 5.7 + ... + 97.99
6A = 1.3.6 + 3.5.(7-1) + 5.7.(9-3) + ... + 97.99.(101-95)
6A = 1.3.6 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6A = 1.3.6 + 97.99.101 - 1.3.5
6A = 3.(1 + 97.33.101)
2A = 1 + 323301 = 323302
A = 161651
D= 1 x 99 x 36 cặp = 3564