\(\frac{3}{3.6}\)+\(\frac{3}{6.9}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

B = \(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{53.56}\)

B = \(\frac{6-3}{3.6}+\frac{9-6}{6.9}+...+\frac{56-53}{53.56}\)

B = \(\frac{6}{3.6}-\frac{3}{3.6}+...+\frac{56}{53.56}-\frac{53}{53.56}\)

B = \(\frac{1}{3}-\frac{1}{6}+...+\frac{1}{53}-\frac{1}{56}\)

B = \(\frac{1}{3}-\frac{1}{56}\)

B = \(\frac{53}{168}\)

19 tháng 3 2018

Ta có:

\(B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.11}+...+\frac{3}{53.56}\)

\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{56}\)

\(=\frac{1}{3}-\frac{1}{56}=\frac{53}{168}\)

Vậy B=\(\frac{53}{168}\)

20 tháng 3 2018

Ta có : 

\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)

\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)

\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)

\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)

\(H=\frac{15}{4}.\frac{1}{225}\)

\(H=\frac{1}{60}\)

Vậy \(H=\frac{1}{60}\)

Chúc bạn học tốt ~ 

20 tháng 3 2018

\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)

\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)

\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)

\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)

\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)

\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)

\(H=15\cdot\frac{1}{900}\)

\(H=\frac{1}{60}\)

20 tháng 3 2018

Mình giải đc rồi nên các bạn không cần làm nữa nhé !!!

4 tháng 4 2018

b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)

a không biết

4 tháng 4 2018

câu b mình thiếu, là \(\frac{100^2}{100.101}\)nhé

7 tháng 3 2018

Bài 1 :

36/1212 = 3/101

13/1313 = 1/101

3/101 + 1/101 = 4/101

Vậy 36/1212 + 13/1313 = 4/101.

Bài 2 :

A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9

A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9

A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13

A = 0 + (-1) + 5/13

A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.

Chúc bạn học giỏi nhé.

7 tháng 3 2018

1)4/101

2)-8/13

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

23 tháng 6 2020

A = \(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}+\frac{-2}{9}\)

A = \(\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{73}\)

A = \(\left(\frac{3-2}{9}\right)-\left(\frac{27+1}{36}\right)+\left(\frac{9+1}{15}\right)+\frac{1}{73}\)

A  = \(\frac{1}{9}-\frac{7}{9}+\frac{6}{9}+\frac{1}{73}\)

A = \(0+\frac{1}{73}=\frac{1}{73}\)