K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

a,  2015^2 - 2014^2

=(2015-2014)(2015+2014)

=1.4029

=4029

 

b,  1^2 - 2^2 + 3^2 - 4^2 + ......+  99^2 - 100^2

=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)

=-(1+2)-(3+4)-...-(99+100)

=-1-2-3-4-...-99-100

=(-1-100).100:2=-5050

 

6 tháng 9 2018

Làm trc cho 2 câu cuối

c) \(a^2-b^2-4a+4b\)

\(=\left(a+b\right)\left(a-b\right)-4\left(a-b\right)\)

\(=\left(a-b\right)\left[\left(a+b\right)-4\right]\)

d) \(a^2+2ab+b^2-2a-2b+1\)

\(=\left(a+b\right)^2-2\left(a+b\right)+1\)

\(=\left(a+b\right)\left[\left(a+b\right)-2\right]+1\)

13 tháng 9 2021

\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)

\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)

 

 

 

13 tháng 9 2021

\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)

\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)

20 tháng 11 2015

Nhớ ghi dấu ngoặc tránh giải sai. 

\(a.\)  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}\)

Ta có: 

\(2x+6=2\left(x+3\right)\)

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

nên \(MTC:\)  \(2\left(x-3\right)\left(x+3\right)\)

Do đó:  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}=\frac{x+4}{2\left(x+3\right)}+\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+4\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{2.3}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-12+6}{2\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2-2x+3x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-2\right)+3\left(x-2\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{x-2}{2\left(x-3\right)}\)

 

20 tháng 11 2015

tick mình đi mình giải cho nha

1 tháng 12 2015

câu b nè

\(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}-\frac{x+3}{x^2-1}\)

=\(\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{\left(3x^2+x+3x+1\right)-\left(x^2-2x+1\right)-\left(x^2-x-3+3x\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2+4x+3}{\left(x+1\right)\left(x-1^2\right)}\)

=\(\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)^2}=\frac{x+3}{\left(x-1\right)^2}\)

đơn giản 

nhưng trả lời câu hỏi của tớ đã

1 tháng 11 2015

\(x^3+8x^2+17x+10\)

\(=x^3+2x^2+x^2+5x^2+10x+5x+2x+10\)

\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(5x^2+5x\right)+\left(10x+10\right)\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+5x\left(x+1\right)+10\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+5x+10\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)