Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20182 - 20172 + 20162 - 20152 + ... + 22 - 12
= (2018+2017)(2018-2017) + (2016+2015)(2016-2015) + ... + (2+1)(2-1)
= 2018 + 2017 + 2016 + 2015 + ... + 2 + 1
= \(\dfrac{\left(1+2018\right).2018}{2}=2037171\)
Bài 1:
a, \(x^2+10x+26+y^2+2y\)
\(=x^2+2.x.5+5^2+y^2+2.y.1+1^2\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b, \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2.x.y+y^2+y^2+2.y.1+1^2\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c, \(4x^2+2z^2-4xz-2z+1\)
\(=\left(2x\right)^2-2.2x.z+z^2+z^2-2.z.1+1^2\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
Chúc bạn học tốt!!!
Bài1:
Bn kia giải r nhé
Bài 2:
a)\(127^2+146.127+73^2=127^2+2.73.127+73^2\)
=\(\left(127+73\right)^2=200^2=40000\)
b)\(31,8^2-63,6.21,8+21,8^2=\left(31,8-21,8\right)^2=10^2=100\)
c)\(2018^2-2017^2+2016^2-2015^2+...+2^2-1\)
=\(\left(2018+2017\right)+\left(2015+2016\right)+...+\left(2+1\right)\)
=4025+4031+...+3
=...(bn tự tính)
d)\(2017^2-2016.2018=2017^2-\left(2017^2-1\right)=1\)
A=1^2-2^2+3^2-4^2+...+2015^2-2016^2+2017^2
A=2017^2-2016^2+2015^2-2014^2+...+5^2-4^2+3^2-2^2+1^2
A=(2017-2016)(2017+2016)+(2015-2014)(2015+2014)+...+(5-4)(5+4)+(3-2)(3+2)+1
A=2017+2016+2015+2014+...+5+4+3+2+1
A=(2017+1).2017:2
A=2018.2017:2
A=1009.2017=2035153
Hình như mình cũng làm như thế này thì phải mà sao vào thi violympic lại xai
B. \(\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)
<=> \(\frac{x+2019}{2015}+\frac{x+2019}{2016}=\frac{x+2019}{2017}+\frac{x+2019}{2018}\)
<=>(x+2019).(\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
Vì (\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)
=> x+2019>0
=>x>-2019
a, \(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
<=>\(\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
<=> \((x-2020)(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018})=0\)
<=>\(x-2020=0\)
<=> \(x=2020\)
Vậy_
b, tương tự
b) \(x,y\ge1\Rightarrow xy\ge1\)
BĐT đã cho tương đương với:
\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
BĐT cuối luôn đúng nên ta có đpcm
Đẳng thức xảy ra khi x=y hoặc xy=1
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)
\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)
\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)
\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(< =>x-2020=0< =>x=2020\)
a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3
⇔\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0
⇔\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0
⇔\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0
⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0
Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0
⇒x+2004=0
⇔x=-2004
Vậy tập nghiệm của phương trình đã cho là:S={-2004}
\(2018^2-2017^2+2016^2-2015^2+...+2^2-1^2\)
\(=\left(2018+2017\right)\left(2018-2017\right)+\left(2016+2015\right)\left(2016-2015\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=4035+4031+...+3\)
Từ 3 đến 4035 có số lượng số hạng là:
\(\left(4035-3\right):4+1=1009\)
Ta có:
\(4035+4031+....+3\)
\(=\dfrac{\left(4035+3\right).1009}{2}=2037171\)
Chúc bạn học tốt!!!