\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

a) \(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)=-3

\(\frac{x+2}{2002}\)+\(\frac{x+5}{1999}\)+\(\frac{x+201}{1803}\)+3=0

\(\frac{x+2}{2002}\)+1+\(\frac{x+5}{1999}\)+1+\(\frac{x+201}{1803}\)+1=0

\(\frac{x+2004}{2002}\)+\(\frac{x+2004}{1999}\)+\(\frac{x+2004}{1803}\)=0

⇔(x+2004)(\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))=0

Mà (\(\frac{1}{2002}\)+\(\frac{1}{1999}\)+\(\frac{1}{1803}\))≠0

⇒x+2004=0

⇔x=-2004

Vậy tập nghiệm của phương trình đã cho là:S={-2004}

Phạm Thái HảiCảm ơn bn iu nhìu nhé❤

28 tháng 2 2020

a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)

\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)

\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)

\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

c) \(x^3-3x^2+4=0\)

\(\Leftrightarrow x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)

13 tháng 3 2020

\(a.\frac{x-6}{x-4}=\frac{x}{x-2}\\\Leftrightarrow \frac{\left(x-6\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=\frac{x\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}\\\Leftrightarrow \left(x-6\right)\left(x-2\right)=x\left(x-4\right)\\\Leftrightarrow \left(x-6\right)\left(x-2\right)-x\left(x-4\right)=0\\ \Leftrightarrow x^2-2x-6x+12-x^2+4x=0\\\Leftrightarrow -4x+12=0\\\Leftrightarrow -4x=-12\\ \Leftrightarrow x=3\)

\(b.1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\\ \Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}+\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=0\\ \Leftrightarrow x^2-x-2x+3+2x^2-2x-5x+5-3x^2+6x+5x-10=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \)

13 tháng 3 2020

bạn có thể làm câu D,E được không ạ

23 tháng 3 2020

a, \(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

<=>\(\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)

<=> \((x-2020)(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018})=0\)

<=>\(x-2020=0\)

<=> \(x=2020\)

Vậy_

b, tương tự

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

16 tháng 4 2020

\(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)

<=> \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

<=> \(\frac{3\left(2x-1\right)}{5\cdot3}-\frac{5\left(x-2\right)}{3\cdot5}-\frac{x+7}{15}=0\)

<=> \(\frac{6x-3-5x+10-x-7}{15}=0\)

<=> \(\frac{-14}{15}=0\)

=> PT vô nghiệm

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

14 tháng 5 2019

B. \(\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)

<=> \(\frac{x+2019}{2015}+\frac{x+2019}{2016}=\frac{x+2019}{2017}+\frac{x+2019}{2018}\)

<=>(x+2019).(\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)

Vì (\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}>0\)

=> x+2019>0

=>x>-2019