Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3469-54}{6938-108}\)
\(=\frac{3415}{6830}\)
\(=\frac{3415}{6830}=\frac{3415:3415}{6830:3415}=\frac{1}{2}=\frac{3}{6}\)
\(B=\frac{2468-89}{3720-147}\)
\(=\frac{2370}{3555}\)
\(=\frac{2370}{3555}=\frac{2370:1185}{3555:1185}=\frac{2}{3}=\frac{4}{6}\)
Bài 1:
\(\frac{-3}{4}=\frac{\left(-3\right)\cdot5}{4\cdot5}=\frac{-15}{20}\)
\(\frac{4}{-5}=\frac{-4}{5}=\frac{\left(-4\right)\cdot4}{5\cdot4}=\frac{-16}{20}\)
Ta thấy:\(\frac{-15}{20}>\frac{-16}{20}\Leftrightarrow-\frac{3}{4}>-\frac{4}{5}\)
\(B=\frac{1010+1007+\frac{2017}{113}+\frac{2017}{117}-\frac{1010}{119}-\frac{1007}{119}}{1010+1008+\frac{2018}{113}+\frac{2018}{117}-\frac{1010}{119}-\frac{1008}{119}}\)
\(B=\frac{2017+\frac{2017}{113}+\frac{2017}{117}-\frac{2017}{119}}{2018+\frac{2018}{113}+\frac{2018}{117}-\frac{2018}{119}}\)
\(B=\frac{2017.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2018.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)
\(B=\frac{2017}{2018}\)
Vậy \(B=\frac{2017}{2018}\)
Chúc bạn học tốt !!!
\(\frac{1010}{\left(1008.8-994\right)}=\frac{1010}{8064-994}=\frac{1010}{7070}=\frac{1}{7}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2015}+\frac{1}{2016}\)
\(\Rightarrow B-A=\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)-\left(\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\right)\)
\(\Rightarrow B-A=\frac{1}{1008}\)
bài này không thể tính nhanh được