Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
a)\(\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)
\(=\left(100+121+144\right)\div\left(169+196\right)\)
\(=365\div365\)
\(=1\)
b) \(1.2.3...9-1.2.3...8-1.2.3...8^2\)
\(=1.2.3...8\left(9-1-8\right)\)
\(=1.2.3...8.0\)
\(=0\)
d) \(1152-\left(374+1152\right)+\left(-65+374\right)\)
\(=1152-374-1152-65+374\)
\(=\left(1152-1152\right)-65+\left(374-374\right)\)
\(=0-65+0\)
\(=-65\)
e) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)
\(=13-\left(12-11\right)+\left(10-9\right)+\left(8-7\right)-\left(6-5\right)-\left(4-3\right)\)\(+\left(2-1\right)\)
\(=13-1+1+1-1-1+1\)
\(=13+0+0+0\)
\(=13\)
Câu hỏi của Erza Scarlet - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé
10+11+12+..+99
=[(99+10)(99-10)+1]/2
=9702/2
=4851
Số số hạng của dãy trên là:
(99-10):1+1=90(số)
Tổng của dãy trên là:
(10+99).90:2=4905