K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

\(\int\left(\sqrt[4]{x^3}+\sqrt[3]{x}+3\sqrt{x}\right)dx\)

\(=\int\left(x^{\frac{3}{4}}+x^{\frac{1}{3}}+3x^{\frac{1}{2}}\right)dx\)

\(=\int x^{\frac{3}{4}}.dx+\int x^{\frac{1}{3}}.dx+3\int x^{\frac{1}{2}}.dx\)

\(=\frac{4}{7}x^{\frac{7}{4}}+\frac{3}{4}x^{\frac{4}{3}}+2.x^{\frac{3}{2}}+C\)

NV
5 tháng 11 2021

a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)

b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)

Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)

\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)

\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)

c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)

d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)

e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)

6 tháng 11 2021

Em cảm ơn nhiều ạ

18 tháng 3 2016

a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)

Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)

                \(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)

Trở về biến x, thu được :

\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)

 

b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)

 

c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)

Đặt \(x-\frac{1}{x}=t\)

\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)

                           \(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)

 

18 tháng 3 2016

Chịu thôi khó quá.

AH
Akai Haruma
Giáo viên
9 tháng 7 2017

a)

Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)

\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)

\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)

b)

\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)

Đặt \(u=\sqrt{x^2+1}\). Khi đó:

\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)

c)

\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)

\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2017

d)

\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)

e)

Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)

\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)

Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)

\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)

Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)

\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:

Đặt \(u=\ln (x+\sqrt{x^2+1}); dv=\frac{1}{\sqrt{x^2+1}}dx\)

\(\Rightarrow du=\frac{dx}{\sqrt{x^2+1}}; v=\int \frac{x}{\sqrt{x^2+1}}dx=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\sqrt{x^2+1}\)

\(\Rightarrow \int \frac{x\ln (x+\sqrt{x^2+1})}{\sqrt{x^2+1}}dx=\int udv=uv-vdu=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-\int dx\)

\(=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-x+C\)

 

21 tháng 3 2016

a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)"  ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)

Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)

                \(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)

 

b) Hàm dưới dấu nguyên hàm

\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)

q=BCNN(2;3)=6

Ta thực hiện phép hữu tỉ hóa theo :

"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"

=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)

Khi đó nguyên hàm đã cho trở thành :

\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)

     \(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)

     \(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)

c) Hàm dưới dấu nguyên hàm có dạng :

\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)

q=BCNN (3;6)=6

Ta thực hiện phép hữu tỉ hóa được

\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)

Khi đó hàm dưới dấu nguyên hàm trở thành

\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)

Do đó :

\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)

    \(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)

27 tháng 12 2016

1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)

\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)

Có:

\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)

Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)

27 tháng 12 2016

3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)

\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)

\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)

NV
2 tháng 1

\(=\int\left(6x^2-\dfrac{4}{x}+sin3x-cos4x+e^{2x+1}+9^{x-1}+\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\right)dx\)

\(=2x^3-4ln\left|x\right|-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+\dfrac{1}{2}e^{2x+1}+\dfrac{9^{x-1}}{ln9}+tanx+cotx+C\)

23 tháng 1 2016

a) Đặt \(x=\sin t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) \(\Rightarrow dx=\cos tdt\)

Suy ra : \(\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\frac{\cos tdt}{\sqrt{\left(1-\sin^2t\right)^3}}=\frac{\cos tdt}{\cos^3t}=\frac{dt}{\cos^2t}=d\left(\tan t\right)\)

Khi đó \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\int d\left(\tan t\right)=\tan t+C=\frac{\sin t}{\sqrt{1-\sin^2t}}=\frac{x}{\sqrt{1-x^2}}+C\)

23 tháng 1 2016

b) Vì \(x^2+2x+3=\left(x+1\right)^2+\left(\sqrt{2}\right)^2\)

nên ta đặt : \(x+1=\sqrt{2}\tan t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow dx=\sqrt{2}.\frac{dt}{\cos^2t};\tan t=\frac{x+1}{\sqrt{2}}\)

Suy ra \(\frac{dx}{\sqrt{x^2+2x+3}}=\frac{dx}{\sqrt{\left(x^2+1\right)^2+\left(\sqrt{2}\right)^2}}=\frac{dx}{\sqrt{2\left(\tan^2t+1\right).\cos^2t}}\)

                        \(=\frac{dt}{\sqrt{2}\cos t}=\frac{1}{\sqrt{2}}.\frac{\cos tdt}{1-\sin^2t}=-\frac{1}{2\sqrt{2}}.\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)\)

Khi đó \(\int\frac{dx}{\sqrt{x^2+2x+3}}=-\frac{1}{2\sqrt{2}}\int\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin t-1}{\sin t+1}\right|+C\left(1\right)\)

Từ \(\tan t=\frac{x+1}{\sqrt{2}}\Leftrightarrow\tan^2t=\frac{\sin^2t}{1-\sin^2t}=\frac{\left(x+1\right)^2}{2}\Rightarrow\sin^2t=1-\frac{2}{x^2+2x+3}\)

Ta tìm được \(\sin t\) thay vào (1), ta tính được I

18 tháng 3 2016

a) Ta thực hiện phép đổi biến :

\(1+\sqrt{x}=t\)  ;  \(x=\left(t-1\right)^2\) ; \(dx=2\left(t-1\right)dt\)

Khi đó \(\left(1+\sqrt{x}\right)^{10}dx=t^{10}.2\left(t-1\right)dt\)

tức là :

\(I_1=2\int\left(t^{11}-t^{10}\right)dt=2\int t^{11}dt-2\int t^{10}dt=2\left(\frac{t^{12}}{12}-\frac{t^{11}}{11}\right)+C\)

                                  \(=\frac{1}{66}t^{11}\left(11t-12\right)+c\)

                                  \(=\frac{1}{66}\left(1+\sqrt{x}\right)^{11}\left[11\sqrt{x}-1\right]+C\)

b) Đặt \(x^2+a=t\)

Ta có \(2xdx=dt\)

\(I_2=\frac{1}{2}\int\frac{dt}{\sqrt[3]{t}}=\frac{1}{2}\int t^{-\frac{1}{3}}dt=\frac{1}{2}.\frac{3}{2}t^{\frac{2}{3}}+C=\frac{3}{4}\sqrt[3]{\left(x^2+a\right)^2+C}\)

 

c) Đặt \(x^3=t\Rightarrow3x^2dx=dt\)

và \(I_3=\frac{1}{3}\int\frac{dt}{\sqrt{t^2+6}}=\frac{1}{3}\ln\left[t+\sqrt{t^2+6}\right]+C\)

                              \(=\frac{1}{3}\ln\left[x^2+\sqrt{x^2+6}\right]+C\)