\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
Help me !!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)

\(M=\frac{8^4+4^{10}.8^6}{8^4+4^{10}.4}\)

\(M=1\frac{8^6}{8^4+4^{10}.4}\)

7 tháng 4 2019

\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)

\(M=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)

\(M=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}\)

\(M=2^8\)

\(M=256\)

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12

31 tháng 5 2020

*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)

\(M=6x^2+9xy-y^2-5x^2+2xy\)

\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)

\(M=x^2+11xy-y^2\)

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)

Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)

=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)

=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)

Thay x = 5/2 ; y = -4/3 vào M ta được :

\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)

\(M=\frac{-1159}{36}\)

Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3

Không chắc nha 

11 tháng 1 2020

Đặt 4+6+8+10+...+2012 là A

Ta có: số số hạng A là:(2012-4)/2+1=1005

          tổng A là:(2012+4).1005/2=1013040

=1013040.\(\frac{1}{1000}\) .(\(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\))

=1013,04.(\(\frac{6}{12}+\frac{9}{12}+\frac{10}{12}\))

=1013,04.\(\frac{25}{12}\)

=2110,5

11 tháng 1 2020

Hãy cho anh

24 tháng 8 2019

71.00000565

24 tháng 8 2019

71.00000565

23 tháng 7 2018

Đề bài như thế này phải ko bn?

\(a,\left(x-\frac{1}{2}\right)^2=4\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=2^2\)

\(\Leftrightarrow x-\frac{1}{2}=2\)

\(\Leftrightarrow x=\frac{5}{2}\)

\(b,\left(2x-1\right)^3=-8\)

\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-1=-2\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

hok tốt nhé!

23 tháng 7 2018

cảm ơn bạn nhiều

17 tháng 12 2015

a) \(=10\frac{1}{4}\cdot\frac{-5}{3}-8\frac{1}{4}\cdot\frac{-5}{3}-5=\left(10\frac{1}{4}-8\frac{1}{4}\right)\cdot\frac{-5}{3}-5\)

\(=\left(\frac{41}{4}-\frac{33}{4}\right)\cdot\frac{-5}{3}-5=2\cdot\frac{-5}{3}-5\)\(=\frac{-10}{3}-\frac{15}{3}=\frac{-25}{3}\)

b)\(=\frac{5}{7}+1+\frac{2}{7}+\frac{2^{10}\cdot\left(2^3\right)^3}{\left(2^2\right)^9}\)

\(=\frac{5}{7}+\frac{2}{7}+1+\frac{2^{10}\cdot2^9}{2^{27}}\)

\(=1+1+\frac{1}{2^8}=2+\frac{1}{256}=\frac{512}{256}+\frac{1}{256}=\frac{513}{256}\)