
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)Ta thấy: \(x^2\ge0\forall x\)\(\Rightarrow-x^2\le0\forall x\)\(\Rightarrow5-x^2\le5\forall x\)
Đẳng thức xảy ra khi \(-x^2=0\Rightarrow x=0\)
b)Ta thấy:\(x^2\ge0\forall x\)\(\Rightarrow5+x^2\ge5\forall x\)\(\Rightarrow\dfrac{1}{5+x^2}\le\dfrac{1}{5}\forall x\)
Đẳng thức xảy ra khi \(x^2=0\Rightarrow x=0\)
c)Ta có: \(x^2-4x+7=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\forall x\)\(\Rightarrow\dfrac{1}{\left(x-2\right)^2+3}\le\dfrac{1}{3}\forall x\)
\(\Rightarrow\dfrac{3}{\left(x-2\right)^2+3}\le\dfrac{3}{3}=1\forall x\)
Đẳng thức xảy ra khi \(\left(x-2\right)^2=0\Rightarrow x=2\)
d)\(-2x^2+3x+2017\)
\(=\dfrac{16145}{8}-2x^2+3x-\dfrac{9}{8}\)
\(=\dfrac{16145}{8}-2\left(x^2-\dfrac{3x}{2}+\dfrac{9}{16}\right)\)
\(=\dfrac{16145}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{16145}{8}\forall x\)
Đẳng thức xảy ra khi \(-2\left(x-\dfrac{3}{4}\right)^2=0\)\(\Rightarrow x=\dfrac{3}{4}\)
a) ta có: \(-x^2\le0\) với mọi x
=> \(5-x^2\le5\) với mọi x
dấu "=" xảy ra khi x= 0
vậy max = 5 khi x = 0
b) để \(\dfrac{1}{5+x^2}\) nhận max
<=> 5+x2 nhận min
mà x2 \(\ge\) 0 với mọi x
=> 5+x2\(\ge\) 5 với mọi x
dấu "=" xảy ra khi x = 0
vậy Min của 5 +x2 =5 khi x =0
=> max của \(\dfrac{1}{5+x^2}\) = \(\dfrac{1}{5}\) khi x =0
c) để \(\dfrac{3}{x^2-4x+7}\) nhận max
<=> x2-4x+7 nhận min
ta có: x2-4x+7 = (x-2)2+3
mà (x-2)2 \(\ge\) 0 với mọi x
=> (x-2)2+3 \(\ge\) 3 với mọi x
<=> x2-4x+7 \(\ge\) 3 với mọi x
dấu "=" xảy ra khi x=2
=> min của x2 -4x+7 = 3 khi x=2
=> max của \(\dfrac{1}{x^2-4x+7}=\dfrac{1}{3}\) khi x=2
d) Ta có:-2x2+3x+2017
= \(-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)+2018,125\)
= \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)
mà \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
=> \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)\(\le\) 2018,125 với mọi x
=> -2x2+3x+2017 \(\le\) 2018,125 với mọi x
dấu "=" xảy ra khi x =\(\dfrac{3}{4}\)
=> max của -2x2+3x+2017 = 2018,125 khi \(x=\dfrac{3}{4}\)

sai dề kìa \(\frac{6x+3}{x^3+1}\)mới đúng
ĐK : \(x\ne-1\)
a) rút gọn được \(C=\frac{1}{x^2-x+1}\)
b)\(C=\frac{1}{3}\Rightarrow\frac{1}{x^2-x+1}=\frac{1}{3}\)
\(\Rightarrow x^2-x+1=3\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\\\left(x-2\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Loai\right)\\x=2\left(Nhan\right)\end{cases}}}\)
vậy khi \(C=\frac{1}{3}\)thì x=2
c)\(C=\frac{1}{x^2-x+2}\)
ta có \(x^2-x+2=x^2-2x\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(\Rightarrow C=\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{7}{4}\)
vậy max \(C=\frac{7}{4}\)khi và chỉ khi \(x=\frac{1}{2}\)

a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)
\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)
b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)
\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)
Dấu = xảy ra khi x=-1/2

a)\(\frac{3}{x-4}-\frac{2}{4-x}=\frac{3}{x-4}+\frac{2}{x-4}=\frac{5}{x-4}\)
câu b làm tương tự nha bạn
c)\(\frac{3}{x+5}-\frac{2}{x+2}=\frac{3x+6-2x-10}{\left(x+5\right)\left(x+2\right)}=\frac{x-4}{\left(x+5\right)\left(x+2\right)}\)
d)\(\frac{9}{x-5}-\frac{6}{x^2-25}=\frac{9x+45-6}{x^2-25}=\frac{9x+39}{x^2-25}\)
mik làm hơi tắt bạn thông cảm nha

a) \(P_{max}=\left(x^2+6x+12\right)_{min}=\left[\left(x^2+2.3x+9\right)+3\right]_{min}=\left[\left(x+3\right)^2+3\right]_{min}=3\)\(P_{max}=P\left(-3\right)=\dfrac{2}{3}\)

a. Ta có:\(P\left(x\right)=\dfrac{2x^2-2x+3}{x^2-x+2}=\dfrac{2x^2-2x+4-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}\)
Để \(P\left(x\right)\) đạt GTLN thì \(\dfrac{1}{x^2-x+2}\)đạt GTNN
\(\Rightarrow x^2-x+2\) đạt GTNN.
Ta có: \(x^2-x+2=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(\Rightarrow P\left(x\right)=2-\dfrac{1}{x^2-x+2}\ge\dfrac{10}{7}\)
Dấu '' = '' xảy ra khi: \(x=\dfrac{1}{2}\)
Vậy: GTNN của \(P\left(x\right)=\dfrac{10}{7}\) tại \(x=\dfrac{1}{2}\).
\(\dfrac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}\)
ta có \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\) (vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) )
Do đó \(\dfrac{1}{x^2-x+2}\ge\dfrac{1}{\dfrac{7}{4}}=\dfrac{4}{7}\)
Nên P\(\ge2-\dfrac{4}{7}=\dfrac{10}{7}\)
Vậy Min P(x)=\(\dfrac{10}{7}\)

\(A=\dfrac{1}{x^2+3x+7}=\dfrac{1}{\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{19}{4}}=\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{1}{\dfrac{19}{4}}=\dfrac{4}{19}\)\(\Rightarrow Max_A=\dfrac{4}{19}\Leftrightarrow x=-\dfrac{3}{2}\)
\(B=\sqrt{4-x^2}\le\sqrt{4-0^2}=\sqrt{4}=2\)
\(\Rightarrow Max_B=2\Leftrightarrow x=0\)

\(\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}\\ \Leftrightarrow\dfrac{x-1}{9}-1+\dfrac{x-2}{8}-1+\dfrac{x-3}{7}-1=\dfrac{x-9}{1}-1+\dfrac{x-8}{2}-1+\dfrac{x-7}{3}-1\\ \Leftrightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\\ \Leftrightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\Leftrightarrow x-10=0\\ \Leftrightarrow x=10\)
Trừ 2 vế với 1:
\(\Rightarrow\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}+3=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}+3\)
\(\Rightarrow\left(\dfrac{x-1}{9}-1\right)+\left(\dfrac{x-2}{8}-1\right)+\left(\dfrac{x-3}{7}-1\right)=\left(\dfrac{x-9}{1}-1\right)+\left(\dfrac{x-8}{2}-1\right)+\left(\dfrac{x-7}{3}-1\right)\)
\(\Rightarrow\left(\dfrac{x-1}{9}-\dfrac{9}{9}\right)+\left(\dfrac{x-2}{8}-\dfrac{8}{8}\right)+\left(\dfrac{x-3}{7}-\dfrac{7}{7}\right)=\left(\dfrac{x-9}{1}-\dfrac{1}{1}\right)+\left(\dfrac{x-8}{2}-\dfrac{2}{2}\right)+\left(\dfrac{x-7}{3}-\dfrac{3}{3}\right)\)
\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-3}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\)
\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}-\dfrac{x-10}{1}-\dfrac{x-10}{2}-\dfrac{x-10}{3}\)
\(\Rightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left(x-10\right)=0\)
\(\Rightarrow x=10\)
ĐKXĐ: \(x\in\mathbb{R}\)
Đặt \(A=\dfrac{x+3}{x^2+7}\). Khi đó:
Xét: \(A-\dfrac{1}{2}=\dfrac{x+3}{x^2+7}-\dfrac{1}{2}=\dfrac{2\left(x+3\right)}{2\left(x^2+7\right)}-\dfrac{x^2+7}{2\left(x^2+7\right)}\)
\(=\dfrac{2x+6-x^2-7}{2\left(x^2+7\right)}=\dfrac{-x^2+2x-1}{2\left(x^2+7\right)}=\dfrac{-\left(x-1\right)^2}{2\left(x^2+7\right)}\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\2\left(x^2+7\right)>0\forall x\end{matrix}\right.\Rightarrow\dfrac{\left(x-1\right)^2}{2\left(x^2+7\right)}\ge0\)
\(\Rightarrow\dfrac{-\left(x-1\right)^2}{2\left(x^2+7\right)}\le0\)
\(\Leftrightarrow A-\dfrac{1}{2}\le0\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)
Vậy GTLN của biểu thức đã cho là \(\dfrac{1}{2}\) tại \(x=1\).
\(\text{#}Toru\)
wow